A116333 k times k+8 gives the concatenation of two numbers m and m+6.
23, 70, 480, 513, 942, 76303, 8923139715521228493004072379869, 77558981961505761619171327422086381910161500424346805, 4494071669430455134012149964165405936125116123191254722256003057119, 5505928330569544865987850035834594063874883876808745277743996942874
Offset: 1
Examples
76303 * 76311 = 58227//58233, where // denotes concatenation, so 76303 is a term.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..16
Programs
-
Python
from itertools import count, islice from sympy import sqrt_mod def A116333_gen(): # generator of terms for j in count(0): b = 10**j a = b*10+1 for k in sorted(sqrt_mod(22,a,all_roots=True)): if a*(b-6) <= k**2-22 < a*(a-7) and k>4: yield k-4 A116333_list = list(islice(A116333_gen(),10)) # Chai Wah Wu, Feb 21 2024
Extensions
a(8)-a(10) from Chai Wah Wu, Feb 21 2024