cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116365 Sum of the sizes of the tails below the Durfee squares of all partitions of n.

This page as a plain text file.
%I A116365 #27 Sep 11 2024 10:08:31
%S A116365 0,1,3,6,11,20,33,56,86,136,200,301,429,621,868,1219,1669,2297,3091,
%T A116365 4171,5542,7357,9648,12652,16402,21250,27298,35003,44556,56637,71515,
%U A116365 90160,113046,141464,176189,219053,271149,335044,412447,506787,620597
%N A116365 Sum of the sizes of the tails below the Durfee squares of all partitions of n.
%D A116365 G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976 (pp. 27-28).
%D A116365 G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004 (pp. 75-78).
%H A116365 Vaclav Kotesovec, <a href="/A116365/b116365.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Alois P. Heinz)
%F A116365 a(n) = Sum_{k=0..n-1} k*A114087(n,k).
%F A116365 G.f.: [(d/dt){sum(q^(k^2)/product((1-q^j)(1-(tq)^j), j=1..k), k=1..oo)}]_{t=1}.
%F A116365 a(n) = (n*A000041(n)-A116503(n))/2. - _Vladeta Jovovic_, Feb 18 2006
%F A116365 a(n) ~ (1/(8*sqrt(3)) - sqrt(3) * (log(2))^2 / (4*Pi^2)) * exp(Pi*sqrt(2*n/3)). - _Vaclav Kotesovec_, Jan 03 2019
%e A116365 a(4) = 6 because the bottom tails of the five partitions of 4, namely [4], [3,1], [2,2], [2,1,1] and [1,1,1,1], are { }, [1], { }, [1,1] and [1,1,1], respectively, having total size 0+1+0+2+3=6.
%p A116365 g:=sum(z^(k^2)/product((1-z^j)*(1-(t*z)^j),j=1..k),k=1..10): dgdt1:=simplify(subs(t=1,diff(g,t))): dgdt1ser:=series(dgdt1,z=0,55): seq(coeff(dgdt1ser,z,n),n=1..48);
%p A116365 # second Maple program:
%p A116365 b:= proc(n, i) option remember;
%p A116365       `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
%p A116365     end:
%p A116365 a:= n-> add(k*add(b(k, d) *b(n-d^2-k, d),
%p A116365             d=0..floor(sqrt(n))), k=0..n-1):
%p A116365 seq(a(n), n=1..40);  # _Alois P. Heinz_, Apr 2012
%t A116365 b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; a[n_] := Sum[k*Sum[b[k, d]*b[n-d^2-k, d], {d, 0, Floor[Sqrt[n]]}], {k, 0, n-1}]; Table[a[n], {n, 1, 40}] (* _Jean-François Alcover_, Mar 31 2015, after _Alois P. Heinz_ *)
%Y A116365 Cf. A115994, A115995, A114087, A114088, A114089.
%K A116365 nonn
%O A116365 1,3
%A A116365 _Emeric Deutsch_, Feb 12 2006