This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A116367 #14 Jun 21 2025 16:18:11 %S A116367 6,18,36,70,104,158,208,282,388,468,602,728,838,984,1174,1382,1536, %T A116367 1772,1986,2170,2448,2698,3008,3386,3684,3940,4258,4530,4868,5528, %U A116367 5910,6370,6712,7340,7710,8234,8776,9258,9832,10424,10866,11658,12128,12694,13180 %N A116367 Sums of rows of the triangle in A116366. %H A116367 G. C. Greubel, <a href="/A116367/b116367.txt">Table of n, a(n) for n = 1..10000</a> %F A116367 a(n) = Sum_{k=1..n} A116366(n,k). %F A116367 a(n) = (n+1)*A000040(n+1) + A007504(n) - 2. %t A116367 Table[Sum[Prime[n+1] + Prime[k+1], {k,1,n}], {n,1,50}] (* _G. C. Greubel_, May 18 2019 *) %o A116367 (PARI) vector(50, n, sum(k=1,n, prime(n+1) + prime(k+1))) \\ _G. C. Greubel_, May 18 2019 %o A116367 (Magma) [(&+[NthPrime(n+1) + NthPrime(k+1): k in [1..n]]): n in [1..50]]; // _G. C. Greubel_, May 18 2019 %o A116367 (Sage) [sum(nth_prime(n+1) + nth_prime(k+1) for k in (1..n)) for n in (1..50)] # _G. C. Greubel_, May 18 2019 %o A116367 (GAP) List([1..50], n-> Sum([1..n], k-> Primes[n+1] + Primes[k+1])); # _G. C. Greubel_, May 18 2019 %K A116367 nonn %O A116367 1,1 %A A116367 _Reinhard Zumkeller_, Feb 06 2006