cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116376 Number of partitions of n into parts with digital root = 6.

This page as a plain text file.
%I A116376 #17 Feb 16 2025 08:33:00
%S A116376 0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,1,0,0,1,0,0,2,0,0,1,0,0,3,0,0,2,0,
%T A116376 0,3,0,0,3,0,0,4,0,0,4,0,0,6,0,0,5,0,0,7,0,0,7,0,0,9,0,0,9,0,0,12,0,0,
%U A116376 11,0,0,15,0,0,15,0,0,18,0,0,19,0,0,23,0,0,23,0,0,29,0,0,29,0,0,35,0,0,37
%N A116376 Number of partitions of n into parts with digital root = 6.
%C A116376 a(n) = A114102(n) - A116371(n) - A116372(n) - A116373(n) - A116374(n) - A116375(n) - A116377(n) - A116378(n) - A114099(n).
%H A116376 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DigitalRoot.html">Digital Root</a>
%F A116376 a(n) = A035386(floor(n/3))*0^(n mod 3).
%F A116376 G.f.: Product_{j>=0} 1/(1 - x^(6+9*j)). - _Robert Israel_, Apr 13 2015
%e A116376 a(30) = #{24+6, 15+15, 6+6+6+6+6} = 3.
%p A116376 N:= 1000: # to get a(1) to a(N)
%p A116376 g:= mul(1/(1-x^(6+9*j)), j=0..floor((N-6)/9)):
%p A116376 S:= series(g, x, N+1):
%p A116376 seq(coeff(S,x,j),j=1..N); # _Robert Israel_, Apr 13 2015
%Y A116376 Cf. A010888.
%Y A116376 Cf. A147706.
%K A116376 nonn,base
%O A116376 1,24
%A A116376 _Reinhard Zumkeller_, Feb 12 2006