This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A116417 #22 Aug 20 2017 10:02:35 %S A116417 1,1,2,2,3,3,6,6,4,4,4,4,12,12,12,12,5,5,10,10,15,15,30,30,20,20,20, %T A116417 20,60,60,60,60,6,6,3,3,2,2,1,1,12,12,12,12,4,4,4,4,30,30,15,15,10,10, %U A116417 5,5,60,60,60,60,20,20,20,20,7,7,14,14,21,21,42,42,28,28,28,28,84,84,84,84 %N A116417 If n = Sum_{m>=1} 2^(m-1) * b(n,m), where each b(n,m) is 0 or 1 and the sum is a finite sum, then a(n) = denominator of Sum_{m>=1} b(n,m)/m. %H A116417 Peter Kagey, <a href="/A116417/b116417.txt">Table of n, a(n) for n = 0..10000</a> %e A116417 13 in binary is 1101. So a(13) is the denominator of 1/4 + 1/3 + 1 = 19/12, since the binary digits at positions (from right to left) 1, 3 and 4 are each 1 and the other digits are 0. %t A116417 Table[Denominator@ Total@ MapIndexed[#1/ First@ #2 &, Reverse@ IntegerDigits[n, 2]], {n, 0, 79}] (* _Michael De Vlieger_, Aug 19 2017 *) %o A116417 (PARI) a(n) = {my(b = Vecrev(binary(n))); denominator(sum(k=1, #b, b[k]/k));} \\ _Michel Marcus_, Apr 18 2016 %Y A116417 Cf. A007088, A116416, A271410. %K A116417 easy,frac,nonn %O A116417 0,3 %A A116417 _Leroy Quet_, Feb 13 2006 %E A116417 More terms from _Joshua Zucker_, May 03 2006