A116422 Triangle read by rows: T(n,k) is the number of self-conjugate partitions of n having Durfee square of size k (n>=1; 1<=k<=floor(sqrt(n))).
1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 3, 0, 1, 0, 2, 0, 3, 0, 1, 0, 3, 0, 4, 0, 1, 1, 0, 4, 0, 0, 4, 0, 1, 1, 0, 5, 0, 0, 5, 0, 2, 1, 0, 7, 0, 0, 5, 0, 3, 1, 0, 8, 0, 0, 6, 0, 5, 1, 0, 10, 0, 1, 0, 6, 0, 6, 0, 1, 0, 12, 0, 1, 0, 7, 0, 9, 0, 1, 0, 14, 0, 2, 0, 7, 0, 11, 0, 1, 0, 16
Offset: 1
Examples
T(13,3)=2 because we have [5,3,3,1,1] and [4,4,3,2] (there is one more self-conjugate partition of 13, namely [7,1,1,1,1,1,1], having Durfee square of size 1). Triangle starts: 1; 0; 1; 0,1; 1,0; 0,1; 1,0; 0,2; 1,0,1; 0,2,0;
References
- G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976 (pp. 27-28).
- G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004 (pp. 75-78).
Links
- Álvar Ibeas, First 400 rows, flattened
Programs
-
Maple
g:=sum(t^k*q^(k^2)/product(1-q^(2*i),i=1..k),k=1..15): gser:=simplify(series(g,q=0,40)): for n from 1 to 33 do P[n]:=coeff(gser,q^n) od: for n from 1 to 33 do row[n]:=seq(coeff(P[n],t^j),j=1..floor(sqrt(n))) od; # yields sequence in triangular form
-
Mathematica
rows = 31; jmax = Floor[Sqrt[rows]]; T[n_, k_] := SeriesCoefficient[Sum[ t^j*x^(j^2)/Product[1-x^(2i), {i, 1, j}], {j, 1, jmax}], {x, 0, n}, {t, 0, k}]; Table[T[n, k], {n, 1, rows}, {k, 1, Floor[Sqrt[n]]}] // Flatten (* Jean-François Alcover, Jul 16 2017 *)
Formula
G.f.: Sum_{k=1..infinity} (t^k*x^(k^2))/Product_{i=1..k} 1-x^(2*i).
G.f.: -1 + Product_{j=1..infinity} 1+t*x^(2*j-1). - Emeric Deutsch, Feb 24 2006
T(n, k) = T(n-2*k, k) + T(n-2*k+1, k-1). If n+k is even, T(n, k) = A008284((n-k^2)/2 + k, k) = A072233((n-k^2)/2, k); 0 otherwise. - Álvar Ibeas, Jul 27 2020
Comments