This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A116431 #17 Sep 28 2024 07:39:07 %S A116431 1,5,48,434,3695,29165,218283,1569995,10950776,74621972,499495257, %T A116431 3297443264,21533211312,139411685398,896352197825,5730605551626, %U A116431 36465861350230 %N A116431 The number of n-almost primes less than or equal to 12^n, starting with a(0)=1. %t A116431 AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* _Eric W. Weisstein_, Feb 07 2006 *) %t A116431 Table[ AlmostPrimePi[n, 12^n], {n, 12}] %o A116431 (PARI) %o A116431 almost_prime_count(N, k) = if(k==1, return(primepi(N))); (f(m, p, k, j=0) = my(c=0, s=sqrtnint(N\m, k)); if(k==2, forprime(q=p, s, c += primepi(N\(m*q))-j; j += 1), forprime(q=p, s, c += f(m*q, q, k-1, j); j += 1)); c); f(1, 2, k); %o A116431 a(n) = if(n == 0, 1, almost_prime_count(12^n, n)); \\ _Daniel Suteu_, Jul 10 2023 %o A116431 (Python) %o A116431 from math import isqrt, prod %o A116431 from sympy import primerange, integer_nthroot, primepi %o A116431 def A116431(n): %o A116431 if n<=1: return 4*n+1 %o A116431 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) %o A116431 return int(sum(primepi(12**n//prod(c[1] for c in a))-a[-1][0] for a in g(12**n,0,1,1,n))) # _Chai Wah Wu_, Sep 28 2024 %Y A116431 Cf. A078840, A078841, A078842, A116432, A078843, A116426, A078844, A116427, A078845, A116428, A116429, A116430, A078846, A116431. %K A116431 nonn,more %O A116431 0,2 %A A116431 _Robert G. Wilson v_, Feb 10 2006 %E A116431 a(13)-a(14) from _Donovan Johnson_, Oct 01 2010 %E A116431 a(15)-a(16) from _Daniel Suteu_, Jul 10 2023