This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A116441 #16 Mar 26 2023 11:14:54 %S A116441 1,2,3,6,11,13,14,21,22,26,33,39,42,66,77,78,91,137,146,219,274,411, %T A116441 438,822,9091,19802,29703,59406,909091,5882353,10989011,12145749, %U A116441 12987013,13986014,14354067,15037594,20979021,21978022,22556391,24291498,25974026,28708134 %N A116441 Numbers k which when sandwiched between two 6's give a multiple of k. %H A116441 Michael S. Branicky, <a href="/A116441/b116441.txt">Table of n, a(n) for n = 1..6573</a> %e A116441 39 belongs to the sequence since 6396 is a multiple of 39 (39*164). %t A116441 f[k_, d_] := Flatten@Table[Select[Divisors[k*(10^(i + 1) + 1)], IntegerLength[ # ] == i &], {i, d}]; f[6, 8] (* _Ray Chandler_, May 11 2007 *) %t A116441 Select[Range[23000000],Divisible[FromDigits[Join[{6},IntegerDigits[#],{6}]],#]&] (* _Harvey P. Dale_, Jan 12 2011 *) %o A116441 (Python) %o A116441 from sympy import isprime %o A116441 from itertools import count, islice %o A116441 def agen(): # generator of terms %o A116441 yield from [1, 2, 3, 6] %o A116441 for k in count(2): %o A116441 t = 6*(10**(k+1) + 1) %o A116441 yield from (t//i for i in range(600, 60, -1) if t%i == 0) %o A116441 print(list(islice(agen(), 42))) # _Michael S. Branicky_, Mar 26 2023 %Y A116441 Cf. A116436, A116437, A116438, A116439, A116440, A116442, A116443, A116444. %K A116441 base,nonn %O A116441 1,2 %A A116441 _Giovanni Resta_, Feb 15 2006 %E A116441 a(40) and beyond from _Michael S. Branicky_, Mar 26 2023