cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116445 Array read by antidiagonals: the binomial transform of the sequence (1,2,..n,0,0,0..) in row n.

This page as a plain text file.
%I A116445 #14 Aug 17 2022 16:21:07
%S A116445 1,1,1,1,3,1,1,3,5,1,1,3,8,7,1,1,3,8,16,9,1,1,3,8,20,27,11,1,1,3,8,20,
%T A116445 43,41,13,1,1,3,8,20,48,81,58,15,1,1,3,8,20,48,106,138,78,17,1,1,3,8,
%U A116445 20,48,112,213,218,101,19,1
%N A116445 Array read by antidiagonals: the binomial transform of the sequence (1,2,..n,0,0,0..) in row n.
%C A116445 Create an array by rows: (binomial transforms of 1,0,0,0,...; 1,2,0,0,0,...; 1,2,3,0,0,0,...; etc.). Antidiagonals of the array become rows of the triangle.
%e A116445 First few rows of the array:
%e A116445   1, 1, 1,  1,  1,   1,   1,   1,   1, 1, ...
%e A116445   1, 3, 5,  7,  9,  11,  13,  15,  17, ...
%e A116445   1, 3, 8, 16, 27,  41,  58,  78, 101, ...  A104249
%e A116445   1, 3, 8, 20, 43,  81, 138, 218, ...       A139488
%e A116445   1, 3, 8, 20, 48, 106, 213, ...
%e A116445   1, 3, 8, 20, 48, 112, 249, ...
%e A116445   ...
%e A116445 Diagonals converge to A001792, binomial transform of (1,2,3,...); and the first few rows of the triangle created by reading upwards antidiagonals are:
%e A116445   1
%e A116445   1, 1;
%e A116445   1, 3, 1;
%e A116445   1, 3, 5,  1;
%e A116445   1, 3, 8,  7,  1;
%e A116445   1, 3, 8, 16,  9,  1;
%e A116445   1, 3, 8, 20, 27, 22, 1;
%e A116445   ...
%e A116445 a(4), a(5), a(6) = 1, 3, 1 = antidiagonals of the array becoming row three of the triangle.
%p A116445 A116445 := proc(n,k)
%p A116445     local a,i ;
%p A116445     a := 0 ;
%p A116445     for i from 0 to n do
%p A116445         a := a+binomial(k,i)*(i+1) ;
%p A116445     end do:
%p A116445     a ;
%p A116445 end proc:
%p A116445 seq(seq(A116445(d-k,k),k=0..d),d=0..12) ; # _R. J. Mathar_, Aug 17 2022
%Y A116445 Cf. A001629 (antidiagonal sums), A104249.
%K A116445 nonn,tabl,easy
%O A116445 1,5
%A A116445 _Gary W. Adamson_, Feb 15 2006
%E A116445 Detailed NAME by _R. J. Mathar_, Aug 17 2022