This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A116486 #26 Dec 05 2019 05:39:19 %S A116486 8,24,80,125,224,2400,3024,4224,4374,6655,9800,10647,123200,194480, %T A116486 336140,601425,633555,709631,5142500,5909760,11859210,1611308699 %N A116486 Numbers k such that both k and k + 1 are logarithmically smooth. %C A116486 N is logarithmically smooth if its largest prime factor p <= ceiling(log_2(n)). %C A116486 Is the sequence finite? %C A116486 No more terms with largest prime factor <= 47. - _Joerg Arndt_, Jul 02 2012 %H A116486 Discussion titled <a href="http://www.mersenneforum.org/showthread.php?t=5630">Special Smooth numbers</a>, (postings in mersenneforum.org), starting March 20 2006. %e A116486 125 is in the sequence because 125 = 5 * 5 * 5, 126 = 2 * 3 * 3 * 7; no prime factor is greater than ceiling(log_2(125)) = 7. %t A116486 logCeilSmoothQ[n_, b_:E] := FactorInteger[n][[-1, 1]] <= Ceiling[Log[b, n]]; Select[Range[10000], logCeilSmoothQ[#, 2] && logCeilSmoothQ[# + 1, 2] &] (* _Alonso del Arte_, Nov 27 2019 *) %o A116486 (PARI) %o A116486 fm=97; /* max factor for factorizing, 2^97 >= searchlimit */ %o A116486 lpf(n)={ vecmax(factor(n, fm)[, 1]) } /* largest prime factor */ %o A116486 lsm(n)=if ( lpf(n)<=#binary(n-1), 1, 0 ); /* whether log-smooth, for n>=2 */ %o A116486 n0=3; /* lower search limit */ %o A116486 l1=lsm(n0-1); %o A116486 { for (n=n0, 10^10, %o A116486 l0 = lsm(n); %o A116486 if ( l0 && l1, print1(n-1,", ") ); %o A116486 l1 = l0; %o A116486 ); } %o A116486 /* _Joerg Arndt_, Jul 02 2012 */ %K A116486 nonn,hard,more %O A116486 1,1 %A A116486 _Harsh R. Aggarwal_, Mar 20 2006 %E A116486 Edited by _Don Reble_, Apr 07 2006