cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116503 Sum of the areas of the Durfee squares of all partitions of n.

This page as a plain text file.
%I A116503 #21 Jan 03 2019 08:04:59
%S A116503 1,2,3,8,13,26,39,64,98,148,216,322,455,648,904,1258,1711,2336,3128,
%T A116503 4198,5548,7330,9569,12496,16146,20836,26674,34098,43273,54846,69072,
%U A116503 86848,108627,135612,168527,209066,258271,318482,391321,479946,586709
%N A116503 Sum of the areas of the Durfee squares of all partitions of n.
%C A116503 a(n) = sum(k^2*A115994(n,k), k=1..floor(sqrt(n))).
%H A116503 Vaclav Kotesovec, <a href="/A116503/b116503.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Alois P. Heinz)
%F A116503 G.f.: sum(k^2*z^(k^2)/product((1-z^j)^2, j=1..k), k=1..infinity).
%F A116503 a(n) ~ sqrt(3) * (log(2))^2 * exp(Pi*sqrt(2*n/3)) / (2*Pi^2). - _Vaclav Kotesovec_, Jan 03 2019
%e A116503 a(4) = 8 because the partitions of 4, namely [4], [3,1], [2,2], [2,1,1] and [1,1,1,1], have Durfee squares of sizes 1,1,2,1 and 1, respectively and 1^2+1^2+2^2+1^2+1^2=8.
%p A116503 g:=sum(k^2*z^(k^2)/product((1-z^j)^2,j=1..k),k=1..10): gser:=series(g,z=0,52): seq(coeff(gser,z^n),n=1..45);
%p A116503 # second Maple program:
%p A116503 b:= proc(n, i) option remember;
%p A116503       `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
%p A116503     end:
%p A116503 a:= n-> add(k^2*add(b(m, k)*b(n-k^2-m, k),
%p A116503             m=0..n-k^2), k=1..floor(sqrt(n))):
%p A116503 seq(a(n), n=1..40);  # _Alois P. Heinz_, Apr 09 2012
%t A116503 b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; a[n_] := Sum [k^2*Sum[b[m, k]*b[n - k^2 - m, k], {m, 0, n - k^2}], {k, 1, Sqrt[n]}]; Table[a[n], {n, 1, 50}] (* _Jean-François Alcover_, Jan 24 2014, after _Alois P. Heinz_ *)
%Y A116503 Cf. A115994, A115995.
%K A116503 easy,nonn
%O A116503 1,2
%A A116503 _Emeric Deutsch_, _Vladeta Jovovic_, Feb 18 2006