cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116536 Numbers that can be expressed as the ratio of the product and the sum of consecutive prime numbers starting from 2.

This page as a plain text file.
%I A116536 #45 Sep 08 2022 08:45:24
%S A116536 1,3,125970,1278362451795,305565807424800745258151050335,
%T A116536 2099072522743338791053378243660769678400212601239922213271230,
%U A116536 330455532167461882998265688366895823334392289157931734871641555
%N A116536 Numbers that can be expressed as the ratio of the product and the sum of consecutive prime numbers starting from 2.
%C A116536 Let prime(i) denote the i-th prime (A000040). Let F(m) = (Product_{i=1..m} prime(i)) / (Sum_{i=1..m} prime(i)). Sequence gives integer values of F(m) and A051838 gives corresponding values of m. - _N. J. A. Sloane_, Oct 01 2011
%D A116536 G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 158.
%H A116536 Amiram Eldar, <a href="/A116536/b116536.txt">Table of n, a(n) for n = 1..81</a> (terms 1..42 from Vincenzo Librandi)
%F A116536 a(n) = A002110(A051838(n)) / A007504(A051838(n)). - _Reinhard Zumkeller_, Oct 03 2011
%F A116536 a(n) = A159578(n)/A001414(A159578(n)). - _Amiram Eldar_, Nov 02 2020
%e A116536 a(1) = 1 because 2/2 = 1.
%e A116536 a(2) = 3 because (2*3*5)/(2+3+5) = 30/10 = 3.
%e A116536 a(3) = 125970 because (2*3*5*7*11*13*17*19)/(2+3+5+7+11+13+17+19) = 9699690/77 = 125790.
%p A116536 P:=proc(n) local i,j, pp,sp; pp:=1; sp:=0; for i from 1 by 1 to n do pp:=pp*ithprime(i); sp:=sp+ithprime(i); j:=pp/sp; if j=trunc(j) then print(j); fi; od; end: P(100);
%t A116536 seq = {}; sum = 0; prod = 1; p = 1; Do[p = NextPrime[p]; prod *= p; sum += p; If[Divisible[prod, sum], AppendTo[seq, prod/sum]], {50}]; seq (* _Amiram Eldar_, Nov 02 2020 *)
%o A116536 (Magma) [p/s: n in [1..40] | IsDivisibleBy(p,s) where p is &*[NthPrime(i): i in [1..n]] where s is &+[NthPrime(i): i in [1..n]]];  // _Bruno Berselli_, Sep 30 2011
%o A116536 (Haskell)
%o A116536 import Data.Maybe (catMaybes)
%o A116536 a116536 n = a116536_list !! (n-1)
%o A116536 a116536_list = catMaybes $ zipWith div' a002110_list a007504_list where
%o A116536    div' x y | m == 0    = Just x'
%o A116536             | otherwise = Nothing where (x',m) = divMod x y
%o A116536 -- _Reinhard Zumkeller_, Oct 03 2011
%Y A116536 Cf. A001414, A108552, A067111, A051838, A140763, A141092, A159578.
%Y A116536 Subsequence of A325307.
%K A116536 nonn,easy
%O A116536 1,2
%A A116536 _Paolo P. Lava_ & _Giorgio Balzarotti_, Mar 27 2006