This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A116540 #29 Sep 23 2023 13:46:49 %S A116540 1,1,3,10,41,192,1025,6087,39754,282241,2159916,17691161,154192692, %T A116540 1423127819,13851559475,141670442163,1517880400352,16989834719706, %U A116540 198191448685735,2404300796114642,30273340418567819,394948562421362392,5330161943597341380,74307324695105372519 %N A116540 Number of zero-one matrices with n ones and no zero rows or columns, up to permutation of rows. %C A116540 Also number of normal set multipartitions of weight n. These are defined as multisets of sets that together partition a normal multiset of weight n, where a multiset is normal if it spans an initial interval of positive integers. Set multipartitions are involved in the expansion of elementary symmetric functions in terms of augmented monomial symmetric functions. - _Gus Wiseman_, Oct 22 2015 %H A116540 Alois P. Heinz, <a href="/A116540/b116540.txt">Table of n, a(n) for n = 0..230</a> %H A116540 P. J. Cameron, T. Prellberg and D. Stark, <a href="http://arxiv.org/abs/math/0510155">Asymptotics for incidence matrix classes</a>, arXiv:math/0510155 [math.CO], 2005-2006. %H A116540 M. Klazar, <a href="http://arXiv.org/abs/math.CO/0305048">Extremal problems for ordered hypergraphs</a>, arXiv:math/0305048 [math.CO], 2003. %H A116540 Gus Wiseman, <a href="https://plus.google.com/114451380451684885774/posts/ix4rbCCY9Dj">Four symmetric function identities</a> %e A116540 The a(3) = 10 normal set multipartitions are: {1,1,1}, {1,12}, {1,1,2}, {2,12}, {1,2,2}, {123}, {1,23}, {2,13}, {3,12}, {1,2,3}. %p A116540 b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, %p A116540 min(n-i*j, i-1), k)*binomial(binomial(k, i)+j-1, j), j=0..n/i))) %p A116540 end: %p A116540 a:= n-> add(add(b(n$2, i)*(-1)^(k-i)*binomial(k, i), i=0..k), k=0..n): %p A116540 seq(a(n), n=0..24); # _Alois P. Heinz_, Sep 13 2019 %t A116540 MSOSA[s_List] := %t A116540 MSOSA[s] = If[Length[s] === 0, {{}}, Module[{sbs, fms}, %t A116540 sbs = Rest[Subsets[Union[s]]]; %t A116540 fms = %t A116540 Function[r, %t A116540 Append[#, r] & /@ %t A116540 MSOSA[Fold[DeleteCases[#1, #2, {1}, 1] &, s, r]]] /@ sbs; %t A116540 Select[Join @@ fms, OrderedQ] %t A116540 ]]; %t A116540 mmallnorm[n_Integer] := %t A116540 Function[s, Array[Count[s, y_ /; y <= #] + 1 &, n]] /@ %t A116540 Subsets[Range[n - 1] + 1]; %t A116540 Array[Plus @@ Length /@ MSOSA /@ mmallnorm[#] &, 9] %t A116540 (* _Gus Wiseman_, Oct 22 2015 *) %o A116540 (PARI) %o A116540 R(n, k)={Vec(-1 + 1/prod(j=1, k, (1 - x^j + O(x*x^n))^binomial(k, j) ))} %o A116540 seq(n) = {concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ))} \\ _Andrew Howroyd_, Sep 23 2023 %Y A116540 Cf. A049311, A101370. %Y A116540 Row sums of A327117. %K A116540 nonn %O A116540 0,3 %A A116540 _Vladeta Jovovic_, Mar 27 2006 %E A116540 a(0)=1 prepended and more terms added by _Alois P. Heinz_, Sep 13 2019