This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A116592 #11 Dec 13 2017 02:45:18 %S A116592 1,3,3,5,6,7,8,9,10,12,13,15,15,16,16,17,18,20,22,23,25,26,27,29,29, %T A116592 30,31,31,32,32,32,33,34,36,38,40,41,43,44,46,47,49,50,51,53,53,54,55, %U A116592 56,57,59,59,60,61,61,62,62,63,63,64,64,64,64,65,66,68,70,72,74,75,77,78 %N A116592 a(0)=1; a(n) = b(n+2) + b(n), where b(n) = A004001(n) is the Hofstadter-Conway sequence defined by b(1) = b(2) = 1, b(n) = b(b(n-1)) + b(n-b(n-1)) for n>2. %C A116592 A similar definition applied to the Fibonacci sequence (A000045) leads to the Lucas sequence (A000032). %H A116592 G. C. Greubel, <a href="/A116592/b116592.txt">Table of n, a(n) for n = 0..5000</a> %F A116592 a(n) = A004001(n+2) + A004001(n) for n>=1. %p A116592 b:=proc(n) option remember; if n<=2 then 1 else b(b(n-1))+b(n-b(n-1)): fi: end: seq(b(n),n=1..71): a:=proc(n) if n=0 then 1 else b(n+2)+b(n) fi end: seq(a(n),n=0..71); %t A116592 Cw[0] = 0; Cw[1] = Cw[2] = 1; Cw[n_Integer?Positive] := Cw[n] = Cw[Cw[n - 1]] + Cw[n - Cw[n - 1]]; L[0] = 1; L[n_] := L[n] = Cw[n - 1] + Cw[n + 1]; Table[L[n], {n, 1, 200}] %Y A116592 Cf. A000032, A005185, A005229, A004001. %K A116592 nonn %O A116592 0,2 %A A116592 _Roger L. Bagula_, Mar 27 2006 %E A116592 Edited by _N. J. A. Sloane_, Apr 15 2006