This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A116608 #66 Jun 07 2024 04:45:10 %S A116608 1,2,2,1,3,2,2,5,4,6,1,2,11,2,4,13,5,3,17,10,4,22,15,1,2,27,25,2,6,29, %T A116608 37,5,2,37,52,10,4,44,67,20,4,44,97,30,1,5,55,117,52,2,2,59,154,77,5, %U A116608 6,68,184,117,10,2,71,235,162,20,6,81,277,227,36,4,82,338,309,58,1 %N A116608 Triangle read by rows: T(n,k) is number of partitions of n having k distinct parts (n>=1, k>=1). %C A116608 Row n has floor([sqrt(1+8n)-1]/2) terms (number of terms increases by one at each triangular number). %C A116608 Row sums yield the partition numbers (A000041). %C A116608 Row n has length A003056(n), hence the first element of column k is in row A000217(k). - _Omar E. Pol_, Jan 19 2014 %H A116608 Alois P. Heinz, <a href="/A116608/b116608.txt">Rows n = 1..500, flattened</a> %H A116608 Emmanuel Briand, <a href="https://arxiv.org/abs/2004.13180">On partitions with k corners not containing the staircase with one more corner</a>, arXiv:2004.13180 [math.CO], 2020. %H A116608 Sang June Lee and Jun Seok Oh, <a href="https://arxiv.org/abs/2003.02511">On zero-sum free sequences contained in random subsets of finite cyclic groups</a>, arXiv:2003.02511 [math.CO], 2020. %F A116608 G.f.: -1 + Product_{j=1..infinity} 1 + tx^j/(1-x^j). %F A116608 T(n,1) = A000005(n) (number of divisors of n). %F A116608 T(n,2) = A002133(n). %F A116608 T(n,3) = A002134(n). %F A116608 Sum_{k>=1} k * T(n,k) = A000070(n-1). %F A116608 Sum_{k>=0} k! * T(n,k) = A274174(n). - _Alois P. Heinz_, Jun 13 2016 %F A116608 T(n + A000217(k), k) = A000712(n), for 0 <= n <= k [Briand]. - _Álvar Ibeas_, Nov 04 2020 %e A116608 T(6,2) = 6 because we have [5,1], [4,2], [4,1,1], [3,1,1,1], [2,2,1,1] and [2,1,1,1,1,1] ([6], [3,3], [3,2,1], [2,2,2] and [1,1,1,1,1,1] do not qualify). %e A116608 Triangle starts: %e A116608 1; %e A116608 2; %e A116608 2, 1; %e A116608 3, 2; %e A116608 2, 5; %e A116608 4, 6, 1; %e A116608 2, 11, 2; %e A116608 4, 13, 5; %e A116608 3, 17, 10; %e A116608 4, 22, 15, 1; %e A116608 ... %p A116608 g:=product(1+t*x^j/(1-x^j),j=1..30)-1: gser:=simplify(series(g,x=0,27)): for n from 1 to 23 do P[n]:=sort(coeff(gser,x^n)) od: for n from 1 to 23 do seq(coeff(P[n],t^j),j=1..floor(sqrt(1+8*n)/2-1/2)) od; # yields sequence in triangular form %p A116608 # second Maple program: %p A116608 b:= proc(n, i) option remember; local j; if n=0 then 1 %p A116608 elif i<1 then 0 else []; for j from 0 to n/i do zip((x, y) %p A116608 ->x+y, %, [`if`(j>0, 0, [][]), b(n-i*j, i-1)], 0) od; %[] fi %p A116608 end: %p A116608 T:= n-> subsop(1=NULL, [b(n, n)])[]: %p A116608 seq(T(n), n=1..30); # _Alois P. Heinz_, Nov 07 2012 %p A116608 # third program %p A116608 nDiffParts := proc(L) %p A116608 nops(convert(L,set)) ; %p A116608 end proc: %p A116608 A116608 := proc(n,k) %p A116608 local a,L; %p A116608 a :=0 ; %p A116608 for L in combinat[partition](n) do %p A116608 if nDiffParts(L) = k then %p A116608 a := a+1 ; %p A116608 end if; %p A116608 end do: %p A116608 a ; %p A116608 end proc: # _R. J. Mathar_, Jun 07 2024 %t A116608 p=Product[1+(y x^i)/(1-x^i),{i,1,20}];f[list_]:=Select[list,#>0&];Flatten[Map[f,Drop[CoefficientList[Series[p,{x,0,20}],{x,y}],1]]] (* _Geoffrey Critzer_, Nov 28 2011 *) %t A116608 Table[Length /@ Split[Sort[Length /@ Union /@ IntegerPartitions@n]], {n, 22}] // Flatten (* _Robert Price_, Jun 13 2020 *) %o A116608 (Python) %o A116608 from math import isqrt %o A116608 from itertools import count, islice %o A116608 from sympy.utilities.iterables import partitions %o A116608 def A116608_gen(): # generator of terms %o A116608 return (sum(1 for p in partitions(n) if len(p)==k) for n in count(1) for k in range(1,(isqrt((n<<3)+1)-1>>1)+1)) %o A116608 A116608_list = list(islice(A116608_gen(),30)) # _Chai Wah Wu_, Sep 14 2023 %o A116608 (Python) %o A116608 from functools import cache %o A116608 @cache %o A116608 def P(n: int, k: int, r: int) -> int: %o A116608 if n == 0: return 1 if k == 0 else 0 %o A116608 if k == 0: return 0 %o A116608 if r == 0: return 0 %o A116608 return sum(P(n - r * j, k - 1, r - 1) %o A116608 for j in range(1, n // r + 1)) + P(n, k, r - 1) %o A116608 def A116608triangle(rows: int) -> list[int]: %o A116608 return list(filter(None, [P(n, k, n) for n in range(1, rows) %o A116608 for k in range(1, n + 1)])) %o A116608 print(A116608triangle(22)) # _Peter Luschny_, Sep 14 2023, courtesy of Amir Livne Bar-on %Y A116608 Cf. A000041, A000005, A000070, A002133, A002134. %Y A116608 Cf. A060177 (reflected rows). - _Alois P. Heinz_, Jan 29 2014 %Y A116608 Cf. A274174. %K A116608 nonn,tabf,look %O A116608 1,2 %A A116608 _Emeric Deutsch_, Feb 19 2006