This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A116674 #21 Jun 28 2025 15:48:21 %S A116674 1,1,2,1,1,2,1,2,2,2,3,1,5,3,4,1,2,7,1,2,8,2,2,10,3,2,11,5,2,13,7,4, %T A116674 12,11,1,19,11,1,2,18,17,1,3,20,21,2,2,22,27,3,2,25,32,5,4,24,41,7,2, %U A116674 30,46,11,2,31,56,15,2,36,62,22,3,33,80,25,1,2,39,87,36,1,4,38,103,45,2,2,45 %N A116674 Triangle read by rows: T(n,k) is the number of partitions of n into odd parts and having exactly k distinct parts (n>=1, k>=1). %C A116674 Row n has floor(sqrt(n)) terms. Row sums yield A000009. T(n,1)=A001227(n) (n>=1). Sum(k*T(n,k),k>=1)=A038348(n-1) (n>=1). %C A116674 Conjecture: Also the number of strict integer partitions of n with k maximal runs of consecutive parts decreasing by 1. - _Gus Wiseman_, Jun 24 2025 %H A116674 Alois P. Heinz, <a href="/A116674/b116674.txt">Rows n = 1..1000, flattened</a> %F A116674 G.f.: product(1+tx^(2j-1)/(1-x^(2j-1)), j=1..infinity). %e A116674 From _Gus Wiseman_, Jun 24 2025: (Start) %e A116674 Triangle begins: %e A116674 1: 1 %e A116674 2: 1 %e A116674 3: 2 %e A116674 4: 1 1 %e A116674 5: 2 1 %e A116674 6: 2 2 %e A116674 7: 2 3 %e A116674 8: 1 5 %e A116674 9: 3 4 1 %e A116674 10: 2 7 1 %e A116674 11: 2 8 2 %e A116674 12: 2 10 3 %e A116674 13: 2 11 5 %e A116674 14: 2 13 7 %e A116674 15: 4 12 11 %e A116674 16: 1 19 11 1 %e A116674 17: 2 18 17 1 %e A116674 18: 3 20 21 2 %e A116674 19: 2 22 27 3 %e A116674 20: 2 25 32 5 %e A116674 Row n = 9 counts the following partitions into odd parts by number of distinct parts: %e A116674 (9) (7,1,1) (5,3,1) %e A116674 (3,3,3) (3,3,1,1,1) %e A116674 (1,1,1,1,1,1,1,1,1) (5,1,1,1,1) %e A116674 (3,1,1,1,1,1,1) %e A116674 Row n = 9 counts the following strict partitions by number of maximal runs: %e A116674 (9) (6,3) (5,3,1) %e A116674 (5,4) (7,2) %e A116674 (4,3,2) (8,1) %e A116674 (6,2,1) %e A116674 (End) %p A116674 g:=product(1+t*x^(2*j-1)/(1-x^(2*j-1)),j=1..35): gser:=simplify(series(g,x=0,34)): for n from 1 to 29 do P[n]:=coeff(gser,x^n) od: for n from 1 to 29 do seq(coeff(P[n],t,j),j=1..floor(sqrt(n))) od; # yields sequence in triangular form %p A116674 # second Maple program: %p A116674 with(numtheory): %p A116674 b:= proc(n, i) option remember; expand(`if`(n=0, 1, %p A116674 `if`(i<1, 0, add(b(n-i*j, i-2)*`if`(j=0, 1, x), j=0..n/i)))) %p A116674 end: %p A116674 T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))( %p A116674 b(n, iquo(n+1, 2)*2-1)): %p A116674 seq(T(n), n=1..30); # _Alois P. Heinz_, Mar 08 2015 %t A116674 b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i<1, 0, Sum[b[n-i*j, i-2]*If[j == 0, 1, x], {j, 0, n/i}]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][b[n, Quotient[n+1, 2]*2-1]]; Table[T[n], {n, 1, 30}] // Flatten (* _Jean-François Alcover_, May 22 2015, after _Alois P. Heinz_ *) %t A116674 Table[Length[Select[IntegerPartitions[n],OddQ[Times@@#]&&Length[Union[#]]==k&]],{n,1,12},{k,1,Floor[Sqrt[n]]}] (* _Gus Wiseman_, Jun 24 2025 *) %Y A116674 Row sums are A000009, strict case of A000041. %Y A116674 Row lengths are A000196. %Y A116674 Leading terms are A001227. %Y A116674 A007690 counts partitions with no singletons, complement A183558. %Y A116674 A034296 counts flat partitions, ranks A066311 or A073491. %Y A116674 A047993 counts partitions with max part = length. %Y A116674 A152140 counts partitions into odd parts by length. %Y A116674 A268193 counts partitions by number of maximal anti-runs, strict A384905. %Y A116674 A384881 counts partitions by number of maximal runs. %Y A116674 Cf. A008284, A038348, A047966, A089259, A325325, A384178, A384886, A384887. %K A116674 nonn,tabf,look %O A116674 1,3 %A A116674 _Emeric Deutsch_, Feb 22 2006