A116681 Triangle read by rows: T(n,k) is the number of partitions of n into distinct parts, in which the sum of the odd parts is k (n>=0, 0<=k<=n).
1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 2, 0, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 2, 0, 0, 0, 1, 0, 1, 0, 2, 0, 2, 0, 2, 0, 1, 0, 1, 0, 2, 3, 0, 0, 0, 2, 0, 1, 0, 2, 0, 2, 0, 3, 0, 2, 0, 2, 0, 1, 0, 2, 0, 2, 4, 0, 0, 0, 2, 0, 2, 0, 2, 0, 2, 0, 3, 0, 4, 0, 3, 0, 2, 0, 2, 0, 2, 0, 2, 0, 3
Offset: 0
Examples
T(10,4)=2 because we have [6,3,1] and [4,3,2,1]. Triangle starts: 1; 0,1; 1,0,0; 0,1,0,1; 1,0,0,0,1; 0,1,0,1,0,1;
Programs
-
Maple
g:=product((1+(t*x)^(2*j-1))*(1+x^(2*j)),j=1..30): gser:=simplify(series(g,x=0,20)): P[0]:=1: for n from 1 to 15 do P[n]:=sort(coeff(gser,x^n)) od: for n from 0 to 15 do seq(coeff(P[n],t,j),j=0..n) od; # yields sequence in triangular form
Formula
G.f.=product((1+tx^(2j-1))(1+x^(2j)), j=1..infinity).
Comments