A116683 Triangle read by rows: T(n,k) is the number of partitions of n into distinct parts, in which the sum of the even parts is k (n>=0, 0<=k<=n).
1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 2, 1, 0, 1, 0, 1, 0, 2, 2, 0, 1, 0, 1, 0, 0, 0, 2, 2, 0, 1, 0, 1, 0, 2, 0, 2, 2, 0, 2, 0, 1, 0, 2, 0, 0, 0, 3, 2, 0, 2, 0, 1, 0, 2, 0, 2, 0, 3, 3, 0, 2, 0, 2, 0, 2, 0, 2, 0, 0, 0, 4, 3, 0, 2, 0, 2, 0, 2, 0, 2, 0, 3, 0, 4, 3, 0, 3, 0, 2, 0, 4
Offset: 0
Examples
T(9,6)=2 because we have [6,3] and [4,3,2]. Triangle starts: 1; 1; 0,0,1; 1,0,1; 1,0,0,0,1; 1,0,1,0,1; 1,0,1,0,0,0,2
Programs
-
Maple
g:=product((1+x^(2*j-1))*(1+(t*x)^(2*j)),j=1..30): gser:=simplify(series(g,x=0,20)): P[0]:=1: for n from 1 to 14 do P[n]:=sort(coeff(gser,x^n)) od: for n from 0 to 14 do seq(coeff(P[n],t,j),j=0..2*floor(n/2)) od; # yields sequence in triangular form
Formula
G.f.=product((1+x^(2j-1))(1+(tx)^(2j)), j=1..infinity).
Comments