cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116686 Total number of parts smaller than the largest part, in all partitions of n.

This page as a plain text file.
%I A116686 #23 Jan 23 2025 06:56:56
%S A116686 0,0,1,3,8,15,29,48,79,123,188,276,404,575,808,1122,1540,2089,2811,
%T A116686 3748,4958,6519,8504,11034,14231,18268,23312,29638,37486,47245,59279,
%U A116686 74140,92347,114703,141933,175174,215478,264407,323448,394788,480509,583609
%N A116686 Total number of parts smaller than the largest part, in all partitions of n.
%C A116686 Also, sum over all partitions of n of the difference between the largest part and the smallest part. - _Franklin T. Adams-Watters_, Feb 29 2008
%C A116686 Row sums of A244966. - _Omar E. Pol_, Jul 19 2014
%H A116686 Alois P. Heinz, <a href="/A116686/b116686.txt">Table of n, a(n) for n = 1..1000</a>
%F A116686 a(n) = Sum_{k>=0} k*A116685(n,k).
%F A116686 G.f.: Sum_{i>=1} (x^i*(Sum_{j=1..i-1} x^j/(1-x^j))/(Product_{q=1..i} (1-x^q))).
%F A116686 a(n) = A006128(n) - A046746(n). - _Vladeta Jovovic_, Feb 24 2006
%F A116686 a(n) = A211870(n) + A211881(n). - _Alois P. Heinz_, Feb 13 2013
%e A116686 a(5) = 8 because the partitions of 5 are [5], [4,(1)], [3,(2)], [3,(1),(1)], [2,2,(1)], [2,(1),(1),(1)] and [1,1,1,1,1], containing a total of 8 parts that are smaller than the largest part (shown between parentheses).
%p A116686 f:=sum(x^i*sum(x^j/(1-x^j),j=1..i-1)/product(1-x^q,q=1..i),i=2..55): fser:=series(f,x=0,50): seq(coeff(fser,x^n),n=1..47);
%t A116686 Table[Length[Flatten[Rest[Split[#]]&/@Select[IntegerPartitions[n], #[[1]]> #[[-1]]&]]],{n,50}] (* _Harvey P. Dale_, Jul 26 2016 *)
%Y A116686 Cf. A116685, A211870, A211881.
%K A116686 nonn
%O A116686 1,4
%A A116686 _Emeric Deutsch_, Feb 23 2006