This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A116700 #52 May 23 2024 14:49:06 %S A116700 12,21,23,31,32,34,41,42,43,45,51,52,53,54,56,61,62,63,64,65,67,71,72, %T A116700 73,74,75,76,78,81,82,83,84,85,86,87,89,91,92,93,94,95,96,97,98,99, %U A116700 101,110,111,112,121,122,123,131,132,141,142,151,152,161,162,171 %N A116700 "Early bird" numbers: write the natural numbers in a string 12345678910111213.... Sequence gives numbers that occur in the string ahead of their natural place, sorted into increasing order (cf. A117804). %C A116700 Based on an idea by Argentinian puzzle creator Jaime Poniachik, these numbers were introduced by Martin Gardner in 2005 in the magazine Math. Horizons, published by the MAA. %C A116700 A048992 is a similar sequence, but is different because it does not contain 21, etc. - see comments in A048992. %C A116700 A220376(n) = position of a(n) in 1234567891011121314151617181... . - _Reinhard Zumkeller_, Dec 13 2012 %D A116700 Martin Gardner, Transcendentals and early birds, Math. Horizons, XIII(2) (2005), pp. 5, 34 (published by Math. Assoc. America). %H A116700 Joshua Zucker and R. Zumkeller, <a href="/A116700/b116700.txt">Table of n, a(n) for n = 1..10000</a> (first 675 terms from Joshua Zucker) %H A116700 S. W. Golomb, <a href="http://www.itsoc.org/publications/nltr/it1202.pdf">Early Bird Numbers</a>, Puzzle Column in IEEE Inform. Soc. Newsletter, 52(4) (2002), p. 10. %H A116700 S. W. Golomb, <a href="http://www.itsoc.org/publications/nltr/it0303web.pdf">Early Bird Numbers: Solutions</a>, IEEE Inform. Soc. Newsletter, 53(1) (2003), p. 30. %F A116700 Asymptotically, the early bird numbers have density 1 [Golomb]. %e A116700 "12" appears at the start of the string, ahead of its position after "11", so is a member. %e A116700 So are 123, 23, 1234, 234, 34, ... and sorting these into increasing order we get 12, 21, 23, 31, ... - _N. J. A. Sloane_, Aug 28 2019 %t A116700 s = ""; Reap[For[n=1, n <= 200, n++, sn = ToString[n]; If[StringPosition[s, sn, 1] =!= {}, Sow[n]]; s = s <> sn]][[2, 1]] (* _Jean-François Alcover_, Nov 04 2016, after _Klaus Brockhaus_ *) %o A116700 (ARIBAS) s:= ""; for n:=1 to 200 do sn:=itoa(n); %o A116700 if substr_index(s, sn) >= 0 then write(n, ","); end; %o A116700 s:=concat(s, sn); end; (* _Klaus Brockhaus_, Jul 23 2007 *) %o A116700 (UBASIC) %o A116700 10 X="" %o A116700 20 for N=1 to 396 %o A116700 30 A=cutspc(str(N)) %o A116700 40 if instr(X,A)>0 then print N; %o A116700 50 X+=A %o A116700 60 next N %o A116700 70 '_Warut Roonguthai_, Jul 23 2007 %o A116700 (Haskell) %o A116700 import Data.List (isPrefixOf, find) %o A116700 import Data.Maybe (fromJust) %o A116700 a116700 n = a116700_list !! (n-1) %o A116700 a116700_list = filter early [1 ..] where %o A116700 early z = not (reverse (show (z - 1)) `isPrefixOf` fst bird) where %o A116700 bird = fromJust $ find ((show z `isPrefixOf`) . snd) xys %o A116700 xys = iterate (\(us, v : vs) -> (v : us, vs)) %o A116700 ([], concatMap show [0 ..]) %o A116700 -- _Reinhard Zumkeller_, Dec 13 2012 %o A116700 (Python) %o A116700 def aupto(limit): %o A116700 s, alst = "", [] %o A116700 for k in range(1, limit+1): %o A116700 sk = str(k) %o A116700 if sk in s: alst.append(k) %o A116700 s += sk %o A116700 return alst %o A116700 print(aupto(171)) # _Michael S. Branicky_, Dec 21 2021 %Y A116700 Cf. A117804. A131881 gives complement. %Y A116700 Cf. A048991 and A048992 (Rollman numbers). %Y A116700 Cf. A007908 (subsequence, apart from initial 1). %K A116700 nonn,base,nice,look %O A116700 1,1 %A A116700 _Bernardo Recamán_, Jul 22 2007 %E A116700 More terms from _Warut Roonguthai_ and _Klaus Brockhaus_, Jul 23 2007 %E A116700 Golomb links from _Jeremy Gardiner_, Jul 23 2007