This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A116719 #18 Jul 03 2018 02:42:20 %S A116719 1,1,4,8,24,55,147,365,954,2431,6327,16369,42743,111595,292849,769805, %T A116719 2030456,5366844,14222475,37768154,100510364,267987501,715847932, %U A116719 1915406263,5133382014,13778469949,37035674682,99683747508,268647638770,724879674667,1958151665752 %N A116719 Number of monocyclic skeletons with n carbon atoms and a ring size of 4. %H A116719 Andrew Howroyd, <a href="/A116719/b116719.txt">Table of n, a(n) for n = 4..200</a> %H A116719 Camden A. Parks and James B. Hendrickson, <a href="https://pubs.acs.org/doi/abs/10.1021/ci00002a021">Enumeration of monocyclic and bicyclic carbon skeletons</a>, J. Chem. Inf. Comput. Sci., vol. 31, 334-339 (1991). %e A116719 If n=5 then the number of monocyclic skeletons with ring size of four is 1. %t A116719 G[n_] := Module[{g}, Do[g[x_] = 1 + x*(g[x]^3/6 + g[x^2]*g[x]/2 + g[x^3]/3) + O[x]^n // Normal, {n}]; g[x]]; %t A116719 T[n_, k_] := Module[{t = G[n], g}, t = x*((t^2 + (t /. x -> x^2))/2); g[e_] = (Normal[t + O[x]^Quotient[n, e]] /. x -> x^e) + O[x]^n // Normal; Coefficient[(Sum[EulerPhi[d]*g[d]^(k/d), {d, Divisors[k]}]/k + If[OddQ[ k], g[1]*g[2]^Quotient[k, 2], (g[1]^2 + g[2])*g[2]^(k/2-1)/2])/2, x, n]]; %t A116719 a[n_] := T[n, 4]; %t A116719 Table[a[n], {n, 4, 30}] (* _Jean-François Alcover_, Jul 03 2018, after _Andrew Howroyd_ *) %Y A116719 Column k=4 of A305059. %Y A116719 Cf. A063832. %K A116719 nonn %O A116719 4,3 %A A116719 _Parthasarathy Nambi_, Aug 13 2006 %E A116719 More terms from _N. J. A. Sloane_, Aug 27 2006 %E A116719 a(5) corrected and terms a(26) and beyond from _Andrew Howroyd_, May 24 2018