A116857 Triangle read by rows: T(n,k) is the number of partitions of n into distinct odd parts, the largest of which is k (n>=1, k>=1).
1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1
Offset: 1
Examples
T(20,11)=2 because we have [11,9] and [11,5,3,1]. T(30,17)=3 because we have [17,13],[17,9,3,1] and [17,7,5,1]. Triangle starts: 1; 0; 0,0,1; 0,0,1; 0,0,0,0,1; 0,0,0,0,1; 0,0,0,0,0,0,1; 0,0,0,0,1,0,1; ...
Links
- Alois P. Heinz, Rows n = 1..350, flattened
Programs
-
Maple
g:=sum(t^(2*j-1)*x^(2*j-1)*product(1+x^(2*i-1),i=1..j-1),j=1..30): gser:=simplify(series(g,x=0,22)): for n from 1 to 20 do P[n]:=sort(coeff(gser,x^n)) od: for n from 1 to 20 do seq(coeff(P[n],t^j),j=1..2*ceil(n/2)-1) od; # yields sequence in triangular form
Formula
G.f.: sum(t^(2j-1)*x^(2j-1)*product(1+x^(2i-1), i=1..j-1), j=1..infinity).
Comments