cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116860 Triangle read by rows: T(n,k) is the number of partitions into distinct odd parts with smallest part k (n>=1, k>=1).

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 0, 1, 0, 1, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Emeric Deutsch, Feb 27 2006

Keywords

Comments

Row 2 has no terms, row 2n-1 has 2n-1 terms, row 4n has 2n-1 terms, row 4n+2 for n>=1 has 2n-1 terms. Row sums are A000700. T(n,1) = A027349(n). Sum_{k>=1} k*T(n,k) = A092319(n).
Within those rows, T(n, k) = 0 occurs with an odd k iff n is odd and 2*floor((n+3)/6) - 1 <= k < n. - Álvar Ibeas, Aug 03 2020

Examples

			T(25,3) = 3 because we have [17,5,3], [15,7,3] and [13,9,3].
Triangle starts:
1;
{};
0,0,1;
1;
0,0,0,0,1;
1;
0,0,0,0,0,0,1;
1,0,1;
		

Crossrefs

Programs

  • Maple
    g:=sum(t^(2*j-1)*x^(2*j-1)*product(1+x^(2*i-1),i=j+1..30),j=1..30): gser:=simplify(series(g,x=0,52)): for n from 1 to 19 do P[n]:=sort(coeff(gser,x^n)) od: d:=proc(n) if n mod 2 = 1 then n elif n=2 then 0 elif n mod 4 = 0 then n/2-1 else n/2-2 fi end: 1; {}; for n from 3 to 19 do seq(coeff(P[n],t^j),j=1..d(n)) od; # yields sequence in triangular form
  • Mathematica
    imax = 20;
    s = Sum[t^(2 j - 1)*x^(2 j - 1)*Product[1 + x^(2 i - 1), {i, j + 1, imax}], {j, 1, imax}] + O[x]^imax;
    Rest /@ DeleteCases[CoefficientList[#, t]& /@ CoefficientList[s, x], {}] // Flatten (* Jean-François Alcover, May 22 2018 *)

Formula

G.f.: Sum_(t^(2*j-1)*x^(2*j-1)*Product_(1+x^(2*i-1), i=j+1..infinity), j=1..infinity).
For k even, T(n, k) = 0. For k odd, T(n, n) = 1 and, if k < n, T(n, k) = Sum_{i > k} T(n - k, i). - Álvar Ibeas, Aug 03 2020