This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A116880 #22 Aug 05 2025 10:02:08 %S A116880 1,1,3,3,7,13,13,29,41,67,67,147,195,247,381,381,829,1069,1277,1545, %T A116880 2307,2307,4995,6339,7379,8451,9975,14589,14589,31485,39549,45373, %U A116880 50733,56829,66057,95235,95235,205059,255747,290691,320707,351187,388099,446455,636925 %N A116880 Generalized Catalan triangle, called CM(1,2). %C A116880 This triangle generalizes the 'new' Catalan triangle A028364 (which could be called CM(1,1); M stands for author Meeussen). %H A116880 Nathaniel Johnston, <a href="/A116880/b116880.txt">Table of n, a(n) for n = 0..2500</a> %H A116880 Wolfdieter Lang, <a href="/A116880/a116880.txt">First 10 rows</a>. %F A116880 G.f. for columns m >= 0 (without leading zeros): c(2;x)*Sum_{k=0..m} C(1,2;m,k)*(2*c(2*x))^k with c(2;x):=(1+2*x*c(2*x))/(1+x) the g.f. of A064062 and c(x) is the g.f. of A000108 (Catalan). C(1,2;n,m) is the triangle A115193(n,m). %e A116880 Triangle begins: %e A116880 1; %e A116880 1, 3; %e A116880 3, 7, 13; %e A116880 13, 29, 41, 67; %e A116880 67, 147, 195, 247, 381; %e A116880 381, 829, 1069, 1277, 1545, 2307; %e A116880 2307, 4995, 6339, 7379, 8451, 9975, 14589; %p A116880 lim:=8: c:=(1-sqrt(1-8*x))/(4*x): g:=(1+2*x*c)/(1+x): gf1:=g*(x*c)^m: for m from 0 to lim do t:=taylor(gf1, x, lim+1): for n from 0 to lim do a[n,m]:=coeff(t, x, n):od:od: gf2:=g*sum(a[s,k]*(2*c)^k,k=0..s): for s from 0 to lim do t:=taylor(gf2, x, lim+1): for n from 0 to lim do b[n,s]:=coeff(t, x, n):od:od: seq(seq(b[n-s,s],s=0..n),n=0..lim); # _Nathaniel Johnston_, Apr 30 2011 %Y A116880 Column m=0 gives A064062. %Y A116880 Row sums give A116881. %K A116880 nonn,easy,tabl %O A116880 0,3 %A A116880 _Wolfdieter Lang_, Mar 24 2006