This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A116883 #27 Oct 06 2024 13:10:06 %S A116883 1,3,5,6,7,9,10,11,13,14,15,17,18,19,20,21,22,23,25,26,27,28,29,30,31, %T A116883 33,34,35,36,37,38,39,41,42,43,44,45,46,47,49,50,51,52,53,54,55,57,58, %U A116883 59,60,61,62,63,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,81,82,83 %N A116883 A number k is included iff (highest odd divisor of k)^2 >= k. %C A116883 Also k is included if (and only if) the highest power of 2 dividing k is <= the largest odd divisor of k. %e A116883 20 = 4 * 5, where 4 is highest power of 2 dividing 20 and 5 is the largest odd number dividing 20. 4 is <= 5 (and, not coincidentally, 5^2 >= 20), so 20 is in the sequence. %p A116883 isA116883 := proc(n) local dvs,hod,i ; dvs := convert(numtheory[divisors](n),list) ; for i from 1 to nops(dvs) do hod := op(-i,dvs) ; if hod mod 2 = 1 then RETURN(hod^2 >= n) ; fi ; od ; end: for n from 1 to 200 do if isA116883(n) then printf("%d, ",n) ; fi ; od ; # _R. J. Mathar_, May 10 2007 %t A116883 Select[Range[100],Last[Select[Divisors[#],OddQ]]^2>=#&] (* _Harvey P. Dale_, Nov 10 2013 *) %t A116883 Select[Range[100], # >= 4^IntegerExponent[#, 2] &] (* _Amiram Eldar_, Jun 11 2022 *) %o A116883 (Python) %o A116883 from itertools import count, islice %o A116883 def A116883_gen(startvalue=1): # generator of terms >= startvalue %o A116883 return filter(lambda n:n==1 or (n&-n)**2<n,count(max(startvalue,1))) %o A116883 A116883_list = list(islice(A116883_gen(),30)) # _Chai Wah Wu_, Oct 06 2024 %Y A116883 Cf. A116882, A000265, A006519. %K A116883 easy,nonn %O A116883 1,2 %A A116883 _Leroy Quet_, Feb 24 2006 %E A116883 More terms from _R. J. Mathar_, May 10 2007