This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A116898 #23 Nov 15 2024 07:04:44 %S A116898 2,10,34,499,1746 %N A116898 Numbers k such that k! is turned into a prime number by changing its trailing 0's into 1's. %C A116898 Also numbers k such that n! + R(Z(k)) is prime, where R(t) = (10^t - 1)/9 is the repunit with t digits (A002275) and Z(m) = Sum_{j>=1} floor(m/5^j) is the number of trailing zeros of m! (A027868). The (probable) prime corresponding to a(5)=1746 has 4905 digits. Next term must be greater than 4000. %C A116898 Next term must be greater than 20000. - _Michael S. Branicky_, Nov 14 2024 %e A116898 10 is a term, since 10! = 3628800 and 3628811 is prime. %p A116898 q:= n-> (f-> isprime(f+(10^padic[ordp](f, 10)-1)/9))(n!): %p A116898 select(q, [$1..500])[]; # _Alois P. Heinz_, Feb 10 2021 %t A116898 tz1Q[n_]:=Module[{idn=Split[IntegerDigits[n!]]},PrimeQ[ FromDigits[ Flatten[ Join[ Most[ idn], Last[idn]/.(0->1)]]]]]; Select[ Range[ 1800],tz1Q] (* _Harvey P. Dale_, Oct 01 2015 *) %o A116898 (Python) %o A116898 from sympy import isprime %o A116898 from math import factorial %o A116898 def ok(n): %o A116898 s, zeros = str(factorial(n)), 0 %o A116898 while s[-1] == '0': s = s[:-1]; zeros += 1 %o A116898 return isprime(int(s + '1'*zeros)) %o A116898 print([m for m in range(500) if ok(m)]) # _Michael S. Branicky_, Feb 10 2021 %Y A116898 Cf. A000142, A002275, A027868. %K A116898 nonn,base,hard,more %O A116898 1,1 %A A116898 _Giovanni Resta_, Mar 07 2006