A116924 Triangle T(n,k) = B(k,n) - B(k-1,n) where B(n,m) = Sum_{i=0..n} binomial(m,i) (3*i+1).
1, 1, 4, 1, 8, 7, 1, 12, 21, 10, 1, 16, 42, 40, 13, 1, 20, 70, 100, 65, 16, 1, 24, 105, 200, 195, 96, 19, 1, 28, 147, 350, 455, 336, 133, 22, 1, 32, 196, 560, 910, 896, 532, 176, 25, 1, 36, 252, 840, 1638, 2016, 1596, 792, 225, 28, 1, 40, 315, 1200
Offset: 0
Examples
First few rows of the triangle T(n,k): 1; 1, 4; 1, 8, 7; 1, 12, 21, 10; 1, 16, 42, 40, 13; 1, 20, 70, 100, 65, 16; 1, 24, 105, 200, 195, 96, 19; ...
Programs
-
Maple
B := proc(n,m) add(binomial(m,i)*(3*i+1),i=0..n) ; end proc: A116924 := proc(n,k) if k = 0 then 1; else B(k,n)-B(k-1,n) ; end if; end proc: seq(seq(A116924(n,k),k=0..n),n=0..15) ; # R. J. Mathar, Mar 27 2010
Formula
Sum_{k=0..n} T(n,k) = A053220(n+1).
Extensions
Replaced definition with formula, corrected from 5th row on by R. J. Mathar, Mar 27 2010
Comments