cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116928 Number of 1's in all self-conjugate partitions of n.

This page as a plain text file.
%I A116928 #5 May 10 2013 12:45:45
%S A116928 1,0,1,0,2,1,3,2,4,4,6,6,8,9,11,12,15,17,20,22,26,29,34,37,43,48,55,
%T A116928 60,69,76,86,94,106,117,131,143,160,176,195,213,236,259,285,311,342,
%U A116928 374,410,446,488,533,581,631,688,748,813,881,957,1038,1125,1216,1317,1425
%N A116928 Number of 1's in all self-conjugate partitions of n.
%C A116928 a(n)=Sum(k*A116927(n,k), k>=0).
%F A116928 G.f.=x+sum(x^(k^2+2)/(1-x^2)/product(1-x^(2j), j=1..k), k=1..infinity).
%F A116928 a(n) = A096911(n)-(1+(-1)^n)/2, m>1. - _Vladeta Jovovic_, Feb 27 2006
%e A116928 a(12)=6 because the self-conjugate partitions of 12 are [6,2,1,1,1,1],[5,3,2,1,1] and [4,4,2,2], containing a total of six 1's.
%p A116928 f:=x+sum(x^(k^2+2)/(1-x^2)/product(1-x^(2*j),j=1..k),k=1..10): fser:=series(f,x=0,70): seq(coeff(fser,x^n),n=1..67);
%Y A116928 Cf. A116927.
%K A116928 nonn
%O A116928 1,5
%A A116928 _Emeric Deutsch_, Feb 26 2006