A116950 Number of functional patterns on n elements; or digraphs with maximum outdegree 1, n arrows and every point connected to an arrow.
1, 2, 7, 20, 61, 174, 514, 1478, 4303, 12437, 36084, 104494, 303167, 879283, 2552803, 7413583, 21544347, 62635823, 182199853, 530228946, 1543761513, 4496523995, 13102414665, 38193626823, 111375529695, 324891970936, 948051861938, 2767336312386, 8080206646244
Offset: 0
Examples
For n=2 there are the following 7 digraphs: o-+.o-+ o->o-+ o->o o-+.o->o o->o->o o->o o->o ^.|.^.| ...^.| ^..| ^.|..... ....... ...^ .... +-+.+-+ ...+-+ +--+ +-+..... ....... o--+ o->o
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2127
Programs
-
Mathematica
nmax = 750; A002861 = Cases[Import["https://oeis.org/A002861/b002861.txt", "Table"], {, }][[;; nmax + 2, 2]]; A000081 = Cases[Import["https://oeis.org/A000081/b000081.txt", "Table"], {, }][[;; nmax + 2, 2]]; etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b]; b[n_] := A002861[[n]] + A000081[[n + 2]]; a = etr[b]; a[0] = 1; a /@ Range[0, nmax](* Jean-François Alcover, Mar 13 2020 *)
Formula
a(n) ~ c * d^n / sqrt(n), where d = A051491 = 2.95576528565199497471481752412..., c = 3.435908969217935496995961718... . - Vaclav Kotesovec, Sep 10 2014
Comments