cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116950 Number of functional patterns on n elements; or digraphs with maximum outdegree 1, n arrows and every point connected to an arrow.

Original entry on oeis.org

1, 2, 7, 20, 61, 174, 514, 1478, 4303, 12437, 36084, 104494, 303167, 879283, 2552803, 7413583, 21544347, 62635823, 182199853, 530228946, 1543761513, 4496523995, 13102414665, 38193626823, 111375529695, 324891970936, 948051861938, 2767336312386, 8080206646244
Offset: 0

Views

Author

Keywords

Comments

A001372 counts functional patterns from a set with n elements to itself; A000041 (partition function) counts functional patterns from a set with n elements to a disjoint set; this is the general case where the range may overlap the domain but may also include other values.

Examples

			For n=2 there are the following 7 digraphs:
o-+.o-+ o->o-+ o->o o-+.o->o o->o->o o->o o->o
^.|.^.| ...^.| ^..| ^.|..... ....... ...^ ....
+-+.+-+ ...+-+ +--+ +-+..... ....... o--+ o->o
		

Crossrefs

Programs

  • Mathematica
    nmax = 750;
    A002861 = Cases[Import["https://oeis.org/A002861/b002861.txt", "Table"], {, }][[;; nmax + 2, 2]];
    A000081 = Cases[Import["https://oeis.org/A000081/b000081.txt", "Table"], {, }][[;; nmax + 2, 2]];
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b];
    b[n_] := A002861[[n]] + A000081[[n + 2]];
    a = etr[b];
    a[0] = 1;
    a /@ Range[0, nmax](* Jean-François Alcover, Mar 13 2020 *)

Formula

Euler transform of A002861(n) + A000081(n+1).
a(n) ~ c * d^n / sqrt(n), where d = A051491 = 2.95576528565199497471481752412..., c = 3.435908969217935496995961718... . - Vaclav Kotesovec, Sep 10 2014