cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117057 Palindromes which are divisible by the product of their digits.

This page as a plain text file.
%I A117057 #19 May 17 2021 04:54:22
%S A117057 1,2,3,4,5,6,7,8,9,11,111,212,1111,2112,4224,11111,11711,13131,21112,
%T A117057 21312,31113,42624,111111,211112,234432,1111111,1113111,2111112,
%U A117057 2112112,2114112,2118112,11111111,21111112,21122112,61111116,111111111
%N A117057 Palindromes which are divisible by the product of their digits.
%C A117057 Are there infinitely many terms that do not contain a 1? - _Derek Orr_, Aug 26 2014
%H A117057 Chai Wah Wu, <a href="/A117057/b117057.txt">Table of n, a(n) for n = 1..221</a>
%e A117057 4224 is in the sequence because (1) it is a palindrome, (2) the product of its digits is 4*2*2*4=64 and 4224 is divisible by 64.
%t A117057 fQ[n_] := Block[{id = IntegerDigits@n}, Reverse@id == id && Count[id, 0] == 0 && Mod[n, Times @@ id] == 0]; Do[ If[ fQ@n, Print@n], {n, 10^7}] (* _Robert G. Wilson v_ *)
%o A117057 (PARI) {m=120000000;for(n=1,m,k=n;rev=0;while(k>0,d=divrem(k,10);k=d[1];rev=10*rev+d[2]); if(n==rev,p=1;h=n;while(h>0,d=divrem(h,10);h=d[1];p=p*d[2]);if(p>0&&n%p==0,print1(n,","))))} \\ _Klaus Brockhaus_, Apr 17 2006
%o A117057 (Python)
%o A117057 from operator import mul
%o A117057 from functools import reduce
%o A117057 from gmpy2 import t_mod, mpz
%o A117057 A117057 = sorted([mpz(n) for n in (str(x)+str(x)[::-1] for x in range(1,10**6))
%o A117057         if not (n.count('0') or t_mod(mpz(n), reduce(mul,(mpz(d) for d in n))))]+
%o A117057         [mpz(n) for n in (str(x)+str(x)[-2::-1] for x in range(10**6))
%o A117057         if not (n.count('0') or t_mod(mpz(n), reduce(mul,(mpz(d) for d in n))))])
%o A117057 # _Chai Wah Wu_, Aug 26 2014
%Y A117057 Cf. A002113.
%K A117057 base,nonn
%O A117057 1,2
%A A117057 Luc Stevens (lms022(AT)yahoo.com), Apr 16 2006
%E A117057 a(23) to a(36) from _Klaus Brockhaus_, Apr 17 2006