cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117058 Palindromes for which the product of the digits is prime.

This page as a plain text file.
%I A117058 #16 Sep 08 2022 08:45:24
%S A117058 2,3,5,7,121,131,151,171,11211,11311,11511,11711,1112111,1113111,
%T A117058 1115111,1117111,111121111,111131111,111151111,111171111,11111211111,
%U A117058 11111311111,11111511111,11111711111,1111112111111,1111113111111
%N A117058 Palindromes for which the product of the digits is prime.
%H A117058 Vincenzo Librandi, <a href="/A117058/b117058.txt">Table of n, a(n) for n = 1..1000</a>
%H A117058 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,110,-110,0,0,-1000,1000).
%F A117058 From _Chai Wah Wu_, Nov 13 2018: (Start)
%F A117058 a(n) = a(n-1) + 110*a(n-4) - 110*a(n-5) - 1000*a(n-8) + 1000*a(n-9) for n > 9.
%F A117058 G.f.: x*(-500*x^8 + 200*x^7 + 200*x^6 + 100*x^5 + 106*x^4 - 2*x^3 - 2*x^2 - x - 2)/((x - 1)*(10*x^2 - 1)*(10*x^2 + 1)*(10*x^4 - 1)). (End)
%e A117058 11211 is in the sequence because it is a palindrome and the product of its digits 1*1*2*1*1=2 is a prime.
%t A117058 Sort[Flatten[Table[NestList[FromDigits[Flatten[{1, IntegerDigits[#], 1}]] &, n, 6], {n, Prime[Range[4]]}]]] (* _Jayanta Basu_, Jul 13 2013 *)
%t A117058 LinearRecurrence[{1, 0, 0, 110, -110, 0, 0, -1000, 1000}, {2, 3, 5, 7, 121, 131, 151, 171, 11211}, 40] (* _Vincenzo Librandi_, Nov 14 2018 *)
%o A117058 (PARI) isok(n) = my(d=digits(n)); (Vecrev(d) == d) && isprime(vecprod(d)); \\ _Michel Marcus_, Nov 14 2018
%o A117058 (Magma) I:=[2,3,5,7,121,131,151,171,11211]; [n le 9 select I[n] else Self(n-1)+110*Self(n-4)-110*Self(n-5)-1000*Self(n-8)+1000*Self(n-9): n in [1..30]]; // _Vincenzo Librandi_, Nov 14 2018
%Y A117058 Cf. A002113.
%K A117058 base,easy,nonn
%O A117058 1,1
%A A117058 Luc Stevens (lms022(AT)yahoo.com), Apr 16 2006