This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A117109 #21 Feb 01 2023 12:28:41 %S A117109 1,4,14,30,69,107,209,295,480,641,1000,1209,1819,2166,2976,3546,4844, %T A117109 5379,7314,8110,10402,11645,14949,15890,20405,21927,26910,29055,35959, %U A117109 37108,46375,48484,57890,61196,73536,75027,91389,93951,110096,114260 %N A117109 Moebius transform of binomial(n+3, 4). %C A117109 Partial sums of a(n) give A015650(n). %H A117109 Robert Israel, <a href="/A117109/b117109.txt">Table of n, a(n) for n = 1..10000</a> %F A117109 a(n) = |{(x,y,z,w) : 1 <= x <= y <= z <= w <= n, gcd(x,y,z,w,n) = 1}|. %F A117109 G.f.: Sum_{k>=1} mu(k) * x^k / (1 - x^k)^5. - _Ilya Gutkovskiy_, Feb 13 2020 %e A117109 a(2)=4 because of the quadruples (1,1,1,1), (1,1,1,2), (1,1,2,2), (1,2,2,2). %p A117109 b34:= unapply(expand(binomial(n+3,4)),n): %p A117109 f:= proc(n) local k; uses numtheory; %p A117109 add(b34(k)*mobius(n/k),k=divisors(n)) %p A117109 end proc: %p A117109 map(f, [$1..100]); # _Robert Israel_, May 24 2019 %t A117109 a[n_] := Sum[Binomial[k+3, 4] MoebiusMu[n/k], {k, Divisors[n]}]; %t A117109 Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Feb 01 2023 *) %o A117109 (PARI) a(n) = sumdiv(n, k, binomial(k+3, 4)*moebius(n/k)); \\ _Michel Marcus_, Nov 04 2018 %Y A117109 Cf. A007438, A015650, A117108. %K A117109 nonn %O A117109 1,2 %A A117109 _Steve Butler_, Apr 18 2006