This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A117119 #20 Feb 16 2025 08:33:00 %S A117119 1,1,2,2,3,3,4,3,4,4,4,4,5,5,6,6,6,6,6,5,6,6,6,7,8,6,9,7,6,8,7,6,8,7, %T A117119 7,9,8,7,9,8,7,11,9,7,12,8,7,9,9,8,10,8,9,12,11,9,12,9,8,13,9,8,13,10, %U A117119 11,14,11,8,13,12,10,13,9,9,16,10,11,14,10,10,15,10,9,16,12,9,16,12,11,18 %N A117119 Number of partitions of 2*n into two odd prime powers. %C A117119 Conjecture: For all n, a(n) > 0; a(n) > A002375(n). %H A117119 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GoldbachConjecture.html">Goldbach Conjecture</a> %H A117119 Wikipedia, <a href="https://en.wikipedia.org/wiki/Goldbach%27s_conjecture">Goldbach's conjecture</a> %H A117119 Wikipedia, <a href="https://en.wikipedia.org/wiki/Waring%E2%80%93Goldbach_problem">Waring-Goldbach problem</a> %H A117119 <a href="/index/Go#Goldbach">Index entries for sequences related to Goldbach conjecture</a> %e A117119 a(1) = #{1+1} = 1; a(2) = #{1+3} = 1; a(3) = #{1+5, 3+3} = 2; %e A117119 a(20) = #{3+37, 3^2+31, 11+29, 13+3^3, 17+23} = 5; %e A117119 a(21) = #{1+41, 5+37, 11+31, 13+29, 17+5^2, 19+23} = 6. %p A117119 isA061345 := proc(n) %p A117119 if n = 1 then %p A117119 true; %p A117119 elif type(n,'even') then %p A117119 false; %p A117119 elif nops(numtheory[factorset](n)) = 1 then %p A117119 true; %p A117119 else %p A117119 false; %p A117119 end if; %p A117119 end proc: %p A117119 A117119 := proc(n) %p A117119 local a,j,i; %p A117119 a := 0 ; %p A117119 for i from 1 do %p A117119 j := 2*n-i ; %p A117119 if j < i then %p A117119 break; %p A117119 end if; %p A117119 if isA061345(i) and isA061345(j) then %p A117119 a := a+1 ; %p A117119 end if; %p A117119 end do: %p A117119 a ; %p A117119 end proc: %p A117119 seq(A117119(n),n=1..60) ; # _R. J. Mathar_, Jul 09 2016 %t A117119 oppQ[n_] := n == 1 || OddQ[n] && PrimeNu[n] == 1; a[n_] := (k = 0; For[i = 1, True, i++, j = 2n - i; If[j < i, Break[]]; If[oppQ[i] && oppQ[j], k++] ]; k); Array[a, 100] (* _Jean-François Alcover_, Feb 13 2018 *) %Y A117119 Cf. A061345. %K A117119 nonn %O A117119 1,3 %A A117119 _Reinhard Zumkeller_, Apr 15 2006