This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A117178 #14 Aug 08 2022 23:56:01 %S A117178 1,0,1,3,0,1,0,4,0,1,10,0,5,0,1,0,15,0,6,0,1,35,0,21,0,7,0,1,0,56,0, %T A117178 28,0,8,0,1,126,0,84,0,36,0,9,0,1,0,210,0,120,0,45,0,10,0,1,462,0,330, %U A117178 0,165,0,55,0,11,0,1,0,792,0,495,0,220,0,66,0,12,0,1 %N A117178 Riordan array (c(x^2)/sqrt(1-4*x^2), x*c(x^2)), c(x) the g.f. of A000108. %C A117178 Row sums are A058622(n+1). Diagonal sums are A001791(n+1), with interpolated zeros. Inverse is A117179. %C A117178 De-aerated and rows reversed, this matrix apparently becomes A014462. The nonzero antidiagonals are embedded in several entries and apparently contain partial sums of previous nonzero antidiagonals. - _Tom Copeland_, May 30 2017 %H A117178 G. C. Greubel, <a href="/A117178/b117178.txt">Rows n = 0..50 of the triangle, flattened</a> %F A117178 T(n,k) = C(n+1, (n-k)/2) * (1 + (-1)^(n-k))/2. %F A117178 Column k has e.g.f. Bessel_I(k,2x) + Bessel_I(k+2, 2x). %F A117178 From _G. C. Greubel_, Aug 08 2022: (Start) %F A117178 Sum_{k=0..n} T(n, k) = A058622(n+1). %F A117178 Sum_{k=0..floor(n/2)} T(n-k, k) = ((1+(-1)^n)/2) * A001791((n+2)/2). %F A117178 T(2*n, n) = ((1+(-1)^n)/2) * A052203(n/2). %F A117178 T(2*n+1, n) = ((1-(-1)^n)/2) * A224274((n+1)/2). %F A117178 T(2*n-1, n-1) = ((1+(-1)^n)/2) * A224274(n/2). (End) %e A117178 Triangle begins %e A117178 1; %e A117178 0, 1; %e A117178 3, 0, 1; %e A117178 0, 4, 0, 1; %e A117178 10, 0, 5, 0, 1; %e A117178 0, 15, 0, 6, 0, 1; %e A117178 35, 0, 21, 0, 7, 0, 1; %e A117178 0, 56, 0, 28, 0, 8, 0, 1; %e A117178 126, 0, 84, 0, 36, 0, 9, 0, 1; %t A117178 T[n_, k_]:= Binomial[n+1, (n-k)/2]*(1+(-1)^(n-k))/2; %t A117178 Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* _G. C. Greubel_, Aug 08 2022 *) %o A117178 (Magma) [(1+(-1)^(n-k))*Binomial(n+1, Floor((n-k)/2))/2: k in [0..n], n in [0..15]]; // _G. C. Greubel_, Aug 08 2022 %o A117178 (SageMath) %o A117178 def A117178(n,k): return (1 + (-1)^(n-k))*binomial(n+1, (n-k)//2)/2 %o A117178 flatten([[A117178(n,k) for k in (0..n)] for n in (0..15)]) # _G. C. Greubel_, Aug 08 2022 %Y A117178 Cf. A001791, A014462, A052203, A058622 (row sums), A117179, A224274. %K A117178 easy,nonn,tabl %O A117178 0,4 %A A117178 _Paul Barry_, Mar 01 2006