A117180 Lowest prime-power dividing the n-th nonsquarefree positive integer.
4, 8, 9, 3, 16, 2, 4, 3, 25, 27, 4, 32, 4, 5, 4, 5, 3, 49, 2, 4, 2, 7, 3, 7, 64, 4, 8, 3, 4, 5, 81, 3, 8, 2, 4, 3, 2, 9, 4, 8, 4, 7, 4, 9, 3, 121, 4, 125, 2, 128, 3, 5, 8, 4, 9, 3, 4, 2, 8, 9, 3, 5, 2, 4, 3, 169, 9, 4, 7, 11, 4, 8, 4, 7, 3, 4, 2, 8, 3, 9, 13, 4, 8, 4, 7, 9, 3, 8, 2, 4, 3, 2, 243, 4, 5, 8
Offset: 1
Keywords
Examples
12, the 4th nonsquarefree positive integer, is 2^2 * 3. 3 is the smallest prime power dividing 12. So a(4) = 3.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A013929 := proc(nmax) local a,n ; a := [] ; n :=1 ; while nops(a) < nmax do if not numtheory[issqrfree](n) then a := [op(a),n] ; fi ; n := n+1 ; od ; a ; end : A034684 := proc(n) local ifs; if n = 1 then 1 ; else ifs := ifactors(n)[2] ; seq(op(1,op(i,ifs))^op(2,op(i,ifs)), i=1..nops(ifs)) ; min(%) ; fi ; end: a013929 := A013929(200) : for n from 1 to nops(a013929) do printf("%d, ",A034684(op(n,a013929))) ; od ; # R. J. Mathar, May 10 2007
-
Mathematica
s[n_] := Min @@ Power @@@ FactorInteger[n]; s /@ Select[Range[200], !SquareFreeQ[#] &] (* Amiram Eldar, Feb 11 2021 *)
Extensions
More terms from R. J. Mathar, May 10 2007