A117184 Riordan array ((1+x)c(x^2)/sqrt(1-4x^2),xc(x^2)), c(x) the g.f. of A000108.
1, 1, 1, 3, 1, 1, 3, 4, 1, 1, 10, 4, 5, 1, 1, 10, 15, 5, 6, 1, 1, 35, 15, 21, 6, 7, 1, 1, 35, 56, 21, 28, 7, 8, 1, 1, 126, 56, 84, 28, 36, 8, 9, 1, 1, 126, 210, 84, 120, 36, 45, 9, 10, 1, 1, 462, 210, 330, 120, 165, 45, 55, 10, 11, 1, 1
Offset: 0
Examples
Triangle begins 1, 1, 1, 3, 1, 1, 3, 4, 1, 1, 10, 4, 5, 1, 1, 10, 15, 5, 6, 1, 1, 35, 15, 21, 6, 7, 1, 1, 35, 56, 21, 28, 7, 8, 1, 1
Programs
-
Mathematica
c[x_] := (1 - Sqrt[1 - 4 x])/(2 x); (* The function RiordanArray is defined in A256893. *) RiordanArray[(1 + #) c[#^2]/Sqrt[1 - 4 #^2]&, # c[#^2]&, 11] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
Formula
Number triangle T(n,k)=C(n+1,(n+k)/2+1)(1+(-1)^(n-k))/2+C(n,(n+k)/2+1/2)(1-(-1)^(n-k))/2; Column k has e.g.f. Bessel_I(k,2x)+Bessel_I(k+1,2x)+Bessel_I(k+2,2x).
Comments