A117186 Expansion of (1+x)c(x^2)/((1-xc(x^2))*sqrt(1-4x^2)), c(x) the g.f. of A000108.
1, 2, 5, 9, 21, 38, 86, 157, 349, 642, 1410, 2610, 5682, 10572, 22860, 42717, 91869, 172298, 368906, 694054, 1480486, 2793012, 5938740, 11230834, 23813746, 45131348, 95462996, 181268292, 382594884, 727747608, 1533053976
Offset: 0
Formula
G.f.: (1+x)(sqrt(1-4x^2)+2x-1)/(2x(1-2x)*sqrt(1-4x^2)); a(n)=sum{k=0..n, C(n+1,(n+k)/2+1)(1+(-1)^(n-k))/2+C(n,(n+k)/2+1/2)(1-(-1)^(n-k))/2}.
G.f.: (1+x)(1+2x-sqrt(1-4x^2))/(2x(1-4x^2)); a(n)=(3*2^n-binomial(2*floor((n+1)/2),floor((n+1)/2)))/2; - Paul Barry, Jan 20 2008
Conjecture: -(n+1)*a(n) +(n+1)*a(n-1) +2*(3*n-2)*a(n-2) -4*n*a(n-3) +8*(3-n)*a(n-4)=0. - R. J. Mathar, Nov 15 2011
Comments