cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117186 Expansion of (1+x)c(x^2)/((1-xc(x^2))*sqrt(1-4x^2)), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 2, 5, 9, 21, 38, 86, 157, 349, 642, 1410, 2610, 5682, 10572, 22860, 42717, 91869, 172298, 368906, 694054, 1480486, 2793012, 5938740, 11230834, 23813746, 45131348, 95462996, 181268292, 382594884, 727747608, 1533053976
Offset: 0

Views

Author

Paul Barry, Mar 01 2006

Keywords

Comments

Row sums of triangle A117184.

Formula

G.f.: (1+x)(sqrt(1-4x^2)+2x-1)/(2x(1-2x)*sqrt(1-4x^2)); a(n)=sum{k=0..n, C(n+1,(n+k)/2+1)(1+(-1)^(n-k))/2+C(n,(n+k)/2+1/2)(1-(-1)^(n-k))/2}.
G.f.: (1+x)(1+2x-sqrt(1-4x^2))/(2x(1-4x^2)); a(n)=(3*2^n-binomial(2*floor((n+1)/2),floor((n+1)/2)))/2; - Paul Barry, Jan 20 2008
Conjecture: a(n) = A058622(n) + A058622(n+1). [R. J. Mathar, Nov 21 2008]
Conjecture: -(n+1)*a(n) +(n+1)*a(n-1) +2*(3*n-2)*a(n-2) -4*n*a(n-3) +8*(3-n)*a(n-4)=0. - R. J. Mathar, Nov 15 2011