cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117189 Binomial transform of the tribonacci sequence A000073 (shifted left twice).

This page as a plain text file.
%I A117189 #30 Jan 04 2023 12:15:17
%S A117189 1,2,5,14,40,114,324,920,2612,7416,21056,59784,169744,481952,1368400,
%T A117189 3885280,11031424,31321376,88930368,252498816,716916544,2035531648,
%U A117189 5779458048,16409538688,46591385856,132286304768,375598753024,1066432564736,3027907856384
%N A117189 Binomial transform of the tribonacci sequence A000073 (shifted left twice).
%C A117189 a(n)/a(n-1) tends to 2.83928675... = A058265 + 1.
%C A117189 Partial sums are in A073357. - _R. J. Mathar_, Apr 02 2008
%H A117189 Vincenzo Librandi, <a href="/A117189/b117189.txt">Table of n, a(n) for n = 0..1000</a>
%H A117189 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (4,-4,2).
%F A117189 Binomial transform of A000073 starting with A000073(2): (1, 1, 2, 4, 7, 13, ...).
%F A117189 a(n) = 4*a(n-1)-4*a(n-2)+2*a(n-3), n>2. - _T. D. Noe_, Nov 07 2006
%F A117189 O.g.f.: -(x-1)^2/(-1+4*x-4*x^2+2*x^3). - _R. J. Mathar_, Apr 02 2008
%F A117189 a(n) = 2*a(n-1) + Sum_{j=1..n-1} j*a(n-j-1), n>=1; with a(0) = 1. - _Bob Selcoe_, Jun 28 2014
%e A117189 a(4) = 14 = 1*1 + 3*1 + 3*2 + 1*4;
%e A117189 a(6) = 324 = 2*114 + 1*40 + 2*14 + 3*5 + 4*2 + 5*1. - _Bob Selcoe_, Jun 28 2014
%t A117189 CoefficientList[Series[-(x - 1)^2/(-1 + 4*x - 4*x^2 + 2*x^3), {x, 0, 30}], x] (* _Wesley Ivan Hurt_, Jul 05 2014 *)
%t A117189 LinearRecurrence[{4,-4,2},{1,2,5},40] (* _Harvey P. Dale_, Oct 10 2016 *)
%Y A117189 Cf. A000073, A115390.
%K A117189 nonn
%O A117189 0,2
%A A117189 _Gary W. Adamson_, Mar 01 2006
%E A117189 Corrected and extended by _T. D. Noe_, Nov 07 2006