cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117213 a(n) = smallest term of sequence A002110 divisible by n-th squarefree positive integer.

This page as a plain text file.
%I A117213 #14 Sep 30 2017 23:55:53
%S A117213 1,2,6,30,6,210,30,2310,30030,210,30,510510,9699690,210,2310,
%T A117213 223092870,30030,6469693230,30,200560490130,2310,510510,210,
%U A117213 7420738134810,9699690,30030,304250263527210,210,13082761331670030,223092870
%N A117213 a(n) = smallest term of sequence A002110 divisible by n-th squarefree positive integer.
%H A117213 Michael De Vlieger, <a href="/A117213/b117213.txt">Table of n, a(n) for n = 1..1441</a>
%F A117213 For n >= 2, a(n) = product of the primes <= A073482(n).
%e A117213 10 is the 7th squarefree integer. And 2*3*5 = 30 is the smallest primorial number divisible by 10 = 2*5. So a(7) = 30.
%p A117213 issquarefree := proc(n::integer) local nf, ifa, lar ; nf := op(2,ifactors(n)) ; for ifa from 1 to nops(nf) do lar := op(1,op(ifa,nf)) ; if op(2,op(ifa,nf)) >= 2 then RETURN(0) ; fi ; od : RETURN(lar) ; end: primor := proc(n::integer) local resul, nepr ; resul :=2 ; nepr :=3 ; while nepr <= n do resul := resul*nepr ; nepr:=nextprime(nepr) ; od : RETURN(resul) ; end: printf("1,") ; for n from 2 to 100 do lfa := issquarefree(n) ; if lfa > 0 then printf("%a,",primor(lfa) ) ; fi ; od : # _R. J. Mathar_, Apr 02 2006
%t A117213 Select[Array[Which[# == 1, 1, SquareFreeQ@ #, Product[Prime@ i, {i, PrimePi@ FactorInteger[#][[-1, 1]]}], True, 0] &, 50], # > 0 & ] (* _Michael De Vlieger_, Sep 30 2017 *)
%Y A117213 Cf. A002110, A073482, A117214.
%K A117213 nonn
%O A117213 1,2
%A A117213 _Leroy Quet_, Mar 03 2006
%E A117213 More terms from _R. J. Mathar_, Apr 02 2006