This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A117221 #19 Sep 16 2024 15:55:41 %S A117221 1,2,3,5,11,22,30,77,231,385,1575,3010,8349,17977,147273,386155, %T A117221 1741630,5392783,18004327,118114304,483502844,4351078600,22540654445, %U A117221 129913904637,1987276856363,15285151248481,133978259344888,365749566870782,3925922161489422,49005643635237875 %N A117221 Number of partitions of 3-smooth numbers. %H A117221 Andrew Howroyd, <a href="/A117221/b117221.txt">Table of n, a(n) for n = 1..100</a> %F A117221 a(n) = A000041(A003586(n)). %t A117221 PartitionsP /@ Select[Range[1000], AllTrue[FactorInteger[#][[All, 1]], # <= 3 &] &] (* _Jean-François Alcover_, Oct 13 2021 *) %o A117221 (PARI) \\ here is(n) is test for A003586 inclusion. %o A117221 is(n)={forprime(p=2, 3, n/=p^valuation(n,p)); n==1} %o A117221 seq(n)={my(A=List(), i=0); while(#A<n, i++; if(is(i), listput(A, numbpart(i)))); Vec(A)} \\ _Andrew Howroyd_, Jan 02 2020 %o A117221 (Python) %o A117221 from sympy import integer_log, npartitions %o A117221 def A117221(n): %o A117221 def bisection(f,kmin=0,kmax=1): %o A117221 while f(kmax) > kmax: kmax <<= 1 %o A117221 while kmax-kmin > 1: %o A117221 kmid = kmax+kmin>>1 %o A117221 if f(kmid) <= kmid: %o A117221 kmax = kmid %o A117221 else: %o A117221 kmin = kmid %o A117221 return kmax %o A117221 def f(x): return n+x-sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) %o A117221 return npartitions(bisection(f,n,n)) # _Chai Wah Wu_, Sep 16 2024 %Y A117221 Cf. A000041, A003586, A090184, A117220, A117222. %K A117221 nonn %O A117221 1,2 %A A117221 _Reinhard Zumkeller_, Mar 04 2006 %E A117221 More terms from _Michel Marcus_, Apr 20 2019