cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117228 Palindromes which are divisible by the product and by the sum of their digits.

This page as a plain text file.
%I A117228 #16 Oct 12 2024 14:43:58
%S A117228 1,2,3,4,5,6,7,8,9,111,2112,4224,13131,21112,21312,31113,42624,211112,
%T A117228 234432,1113111,2111112,2114112,2118112,21122112,61111116,111111111,
%U A117228 211121112,211242112,211262112,213141312,2111111112,2112332112,2114114112,2131221312
%N A117228 Palindromes which are divisible by the product and by the sum of their digits.
%C A117228 Intersection of A082232 and A117057.
%C A117228 Are there infinitely many terms that don't contain a 1? - _Derek Orr_, Aug 25 2014
%H A117228 Chai Wah Wu, <a href="/A117228/b117228.txt">Table of n, a(n) for n = 1..91</a>
%e A117228 42624 is divisible by 4*2*6*2*4 and by 4+2+6+2+4.
%o A117228 (Python)
%o A117228 from operator import mul
%o A117228 from functools import reduce
%o A117228 from gmpy2 import t_mod, mpz
%o A117228 A117228 = sorted([mpz(n) for n in (str(x)+str(x)[::-1] for x in range(1, 10**8))
%o A117228           if not (n.count('0') or t_mod(mpz(n), sum((mpz(d) for d in n)))
%o A117228           or t_mod(mpz(n), reduce(mul, (mpz(d) for d in n))))]+
%o A117228           [mpz(n) for n in (str(x)+str(x)[-2::-1] for x in range(10**8))
%o A117228           if not (n.count('0') or t_mod(mpz(n), sum((mpz(d) for d in n)))
%o A117228           or t_mod(mpz(n), reduce(mul, (mpz(d) for d in n))))])
%o A117228 # _Chai Wah Wu_, Aug 25 2014
%o A117228 (PARI)
%o A117228 rev(n)=r="";d=digits(n);for(i=1,#d,r=concat(Str(d[i]),r));eval(r)
%o A117228 for(n=1,10^7,d=digits(n);if(rev(n)==n,p=prod(i=1,#d,d[i]);if(p&&n%p==0&&n%sumdigits(n)==0,print1(n,", ")))) \\ _Derek Orr_, Aug 25 2014
%Y A117228 Cf. A002113, A082232, A117057.
%K A117228 base,nonn
%O A117228 1,2
%A A117228 _Giovanni Resta_, Apr 22 2006
%E A117228 More terms from _Chai Wah Wu_, Aug 22 2014