This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A117228 #16 Oct 12 2024 14:43:58 %S A117228 1,2,3,4,5,6,7,8,9,111,2112,4224,13131,21112,21312,31113,42624,211112, %T A117228 234432,1113111,2111112,2114112,2118112,21122112,61111116,111111111, %U A117228 211121112,211242112,211262112,213141312,2111111112,2112332112,2114114112,2131221312 %N A117228 Palindromes which are divisible by the product and by the sum of their digits. %C A117228 Intersection of A082232 and A117057. %C A117228 Are there infinitely many terms that don't contain a 1? - _Derek Orr_, Aug 25 2014 %H A117228 Chai Wah Wu, <a href="/A117228/b117228.txt">Table of n, a(n) for n = 1..91</a> %e A117228 42624 is divisible by 4*2*6*2*4 and by 4+2+6+2+4. %o A117228 (Python) %o A117228 from operator import mul %o A117228 from functools import reduce %o A117228 from gmpy2 import t_mod, mpz %o A117228 A117228 = sorted([mpz(n) for n in (str(x)+str(x)[::-1] for x in range(1, 10**8)) %o A117228 if not (n.count('0') or t_mod(mpz(n), sum((mpz(d) for d in n))) %o A117228 or t_mod(mpz(n), reduce(mul, (mpz(d) for d in n))))]+ %o A117228 [mpz(n) for n in (str(x)+str(x)[-2::-1] for x in range(10**8)) %o A117228 if not (n.count('0') or t_mod(mpz(n), sum((mpz(d) for d in n))) %o A117228 or t_mod(mpz(n), reduce(mul, (mpz(d) for d in n))))]) %o A117228 # _Chai Wah Wu_, Aug 25 2014 %o A117228 (PARI) %o A117228 rev(n)=r="";d=digits(n);for(i=1,#d,r=concat(Str(d[i]),r));eval(r) %o A117228 for(n=1,10^7,d=digits(n);if(rev(n)==n,p=prod(i=1,#d,d[i]);if(p&&n%p==0&&n%sumdigits(n)==0,print1(n,", ")))) \\ _Derek Orr_, Aug 25 2014 %Y A117228 Cf. A002113, A082232, A117057. %K A117228 base,nonn %O A117228 1,2 %A A117228 _Giovanni Resta_, Apr 22 2006 %E A117228 More terms from _Chai Wah Wu_, Aug 22 2014