This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A117256 #5 Mar 30 2012 18:36:56 %S A117256 1,1,1,-10,5,1,750,-250,25,1,-328125,93750,-6250,125,1,779296875, %T A117256 -205078125,11718750,-156250,625,1,-9741210937500,2435302734375, %U A117256 -128173828125,1464843750,-3906250,3125,1,630569458007812500,-152206420898437500,7610321044921875 %N A117256 Triangle T, read by rows, where matrix power T^5 has powers of 5 in the secondary diagonal: [T^5](n+1,n) = 5^(n+1), with all 1's in the main diagonal and zeros elsewhere. %C A117256 More generally, if a lower triangular matrix T to the power p is given by: [T^p](n,k) = C(r,n-k)*p^(n-k)*q^(n*(n-1)/2-k*(k-1)/2) then, for all m, [T^m](n,k) = [prod_{j=0..n-k-1}(m*r-p*j)]/(n-k)!*q^(n*(n-1)/2-k*(k-1)/2) for n>k>=0, with T(n,n) = 1. This triangle results when m=1, p=5, q=5, r=1. %F A117256 T(n,k) = A117257(n-k)*5^((n-k)*k). T(n,k) = (-1)^(n-k)*5^(n*(n-1)/2-k*(k-1)/2)/(n-k)!*prod_{j=0..n-k-1}(5*j-1) for n>k>=0, with T(n,n) = 1. %e A117256 Triangle T begins: %e A117256 1; %e A117256 1,1; %e A117256 -10,5,1; %e A117256 750,-250,25,1; %e A117256 -328125,93750,-6250,125,1; %e A117256 779296875,-205078125,11718750,-156250,625,1; %e A117256 -9741210937500,2435302734375,-128173828125,1464843750,-3906250,3125,1; %e A117256 Matrix power T^5 has powers of 5 in the 2nd diagonal: %e A117256 1; %e A117256 5,1; %e A117256 0,25,1; %e A117256 0,0,125,1; %e A117256 0,0,0,625,1; %e A117256 0,0,0,0,3125,1; ... %o A117256 (PARI) {T(n,k)=local(m=1,p=5,q=5,r=1);prod(j=0,n-k-1,m*r-p*j)/(n-k)!*q^((n-k)*(n+k-1)/2)} %Y A117256 Cf. A117257 (column 0); variants: A117250 (p=q=2), A117252 (p=q=3), A117254 (p=q=4), A117258 (p=2, q=4), A117260 (p=-1, q=2), A117262 (p=-1, q=3), A117265 (p=-2, q=2). %K A117256 sign,tabl %O A117256 0,4 %A A117256 _Paul D. Hanna_, Mar 14 2006