cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117275 Number of partitions of n with no even parts repeated and with no 1's.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 3, 3, 4, 6, 7, 9, 12, 14, 18, 23, 27, 34, 42, 50, 62, 75, 89, 108, 130, 154, 184, 220, 259, 307, 364, 426, 502, 590, 688, 806, 941, 1093, 1272, 1478, 1710, 1980, 2290, 2638, 3042, 3503, 4021, 4618, 5296, 6060, 6934, 7924, 9038, 10306, 11740
Offset: 0

Views

Author

Emeric Deutsch, Mar 06 2006

Keywords

Comments

Column 0 of A117274.

Examples

			a(8)=4 because we have [8],[6,2],[5,3] and [3,3,2].
		

Crossrefs

Cf. A117274.

Programs

  • Maple
    g:=(1+x^2)*product((1+x^(2*k))/(1-x^(2*k-1)),k=2..53): gser:=series(g,x=0,62): seq(coeff(gser,x,n),n=0..58);
  • Mathematica
    nmax = 60; CoefficientList[Series[(1-x) * Product[(1+x^(2*k))/(1-x^(2*k-1)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 07 2016 *)

Formula

G.f.: (1+x^2)*product((1+x^(2k))/(1-x^(2k-1)), k=2..infinity).
a(n) ~ exp(sqrt(n/2)*Pi) * Pi / (2^(17/4) * n^(5/4)). - Vaclav Kotesovec, Mar 07 2016