cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117277 Number of partitions of n whose consecutive parts differ by 3.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 3, 1, 2, 3, 2, 1, 3, 2, 3, 2, 2, 2, 3, 2, 2, 3, 2, 1, 4, 2, 2, 2, 2, 3, 4, 1, 2, 3, 3, 1, 4, 2, 2, 3, 2, 2, 4, 1, 3, 3, 2, 1, 4, 4, 2, 2, 2, 2, 5, 1, 3, 3, 2, 2, 4, 2, 2, 3, 3, 2, 4, 1, 2, 4, 3, 2, 4, 2, 3, 2, 2, 3, 4, 3, 2, 3, 2, 1, 6
Offset: 1

Views

Author

Emeric Deutsch, Mar 07 2006

Keywords

Comments

Also number of partitions of n such that if k is the largest part, then each of the parts 1,2,...,k-1 occurs exactly 3 times. Example: a(15)=3 because we have [3,3,2,2,2,1,1,1],[2,2,2,2,2,2,1,1,1] and [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1].
Row sums of A330887. - Omar E. Pol, May 07 2020
Column 3 of A323345. - Omar E. Pol, Dec 03 2020

Examples

			a(15) = 3 because we have [15], [9,6] and [8,5,2].
		

Crossrefs

Programs

  • Maple
    g:=sum(x^((3*k^2-k)/2)/(1-x^k),k=1..10): gser:=series(g,x=0,140): seq(coeff(gser,x^n),n=1..135);
  • Mathematica
    Table[Sum[If[n > 3*k*(k-1)/2 && IntegerQ[n/k - 3*(k-1)/2], 1, 0], {k, Divisors[2*n]}], {n, 1, 100}] (* Vaclav Kotesovec, Oct 23 2024 *)
  • PARI
    seq(N,d)=my(x='x+O('x^N));Vec(sum(k=1,N,x^(k*(d*k-d+2)/2)/(1-x^k)));
    seq(100,3) \\ Joerg Arndt, May 05 2020

Formula

G.f.: Sum_{k>=1} x^((3*k^2-k)/2)/(1-x^k). In general, the generating function for the number of partitions in which consecutive parts differ by d is Sum_{k>=1} x^(k*(d*k-d+2)/2)/(1-x^k). For d=0, 1 and 2 one obtains A000005, A001227 and A038548, respectively.