A117367 a(n) = smallest prime greater than the smallest prime dividing n.
2, 3, 5, 3, 7, 3, 11, 3, 5, 3, 13, 3, 17, 3, 5, 3, 19, 3, 23, 3, 5, 3, 29, 3, 7, 3, 5, 3, 31, 3, 37, 3, 5, 3, 7, 3, 41, 3, 5, 3, 43, 3, 47, 3, 5, 3, 53, 3, 11, 3, 5, 3, 59, 3, 7, 3, 5, 3, 61, 3, 67, 3, 5, 3, 7, 3, 71, 3, 5, 3, 73, 3, 79, 3, 5, 3, 11, 3, 83, 3, 5, 3, 89, 3, 7, 3, 5, 3, 97, 3, 11, 3, 5
Offset: 1
Keywords
Examples
5 is the smallest prime dividing 35. So a(35) is the smallest prime > 5, which is 7.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): a:=proc(n): if n=1 then 2 else nextprime(factorset(n)[1]) fi: end: seq(a(n),n=1..100); # Emeric Deutsch, Apr 22 2006
-
Mathematica
Table[NextPrime[FactorInteger[n][[1, 1]]], {n, 93}] (* Michael De Vlieger, Sep 16 2017 *)
Extensions
More terms from Emeric Deutsch, Apr 22 2006
Comments