cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117408 Triangle read by rows: T(n,k) is the number of partitions of n into odd parts in which the largest part occurs k times (1<=k<=n).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 2, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 1, 4, 1, 0, 0, 0, 0, 0, 1, 5, 1, 1, 0, 0, 0, 0, 0, 1, 6, 2, 1, 0, 0, 0, 0, 0, 0, 1, 8, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 10, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 12, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 15, 4, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Emeric Deutsch, Mar 13 2006

Keywords

Comments

Row sums yield A000009. T(n,1)=A117409(n). Sum(k*T(n,k),k=1..n)=A092311(n).

Examples

			T(14,2)=4 because we have [7,7],[5,5,3,1],[5,5,1,1,1,1] and [3,3,1,1,1,1,1,1,1,1].
		

Crossrefs

Programs

  • Maple
    g:=sum(t*x^(2*k-1)/(1-t*x^(2*k-1))/product(1-x^(2*i-1),i=1..k-1),k=1..40): gser:=simplify(series(g,x=0,35)): for n from 1 to 15 do P[n]:=expand(coeff(gser,x^n)) od: for n from 1 to 15 do seq(coeff(P[n],t^j),j=1..n) od; # yields sequence in triangular form

Formula

G.f.=G(t,x)=sum(tx^(2k-1)/[(1-tx^(2k-1))product(1-x^(2i-1), i=1..k-1)], k=1..infinity).