This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A117411 #22 Sep 07 2022 08:13:42 %S A117411 1,0,1,0,-4,1,0,0,-12,1,0,0,16,-24,1,0,0,0,80,-40,1,0,0,0,-64,240,-60, %T A117411 1,0,0,0,0,-448,560,-84,1,0,0,0,0,256,-1792,1120,-112,1,0,0,0,0,0, %U A117411 2304,-5376,2016,-144,1,0,0,0,0,0,-1024,11520,-13440,3360,-180,1,0,0,0,0,0,0,-11264,42240,-29568,5280,-220,1 %N A117411 Skew triangle associated to the Euler numbers. %C A117411 Inverse is A117414. Row sums of the inverse are the Euler numbers A000364. %C A117411 Triangle, read by rows, given by [0,-4,4,0,0,0,0,0,0,0,...] DELTA [1,0,1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - _Philippe Deléham_, Nov 01 2009 %H A117411 G. C. Greubel, <a href="/A117411/b117411.txt">Rows n = 0..50 of the triangle, flattened</a> %F A117411 Sum_{k=0..n} T(n, k) = A006495(n). %F A117411 Sum_{k=0..floor(n/2)} T(n-k, k) = A117413(n). %F A117411 T(n, k) = (-4)^(n-k)*Sum_{j=0..n-k} C(n,k-j)*C(j,n-k). %F A117411 G.f.: (1-x*y)/(1-2x*y+x^2*y(y+4)). - _Paul Barry_, Mar 14 2006 %F A117411 T(n, k) = (-4)^(n-k)*A098158(n,k). - _Philippe Deléham_, Nov 01 2009 %F A117411 T(n, k) = 2*T(n-1,k-1) - 4*T(n-2,k-1) - T(n-2,k-2), T(0,0) = T(1,1) = 1, T(1,0) = 0, T(n,k) = 0 if k > n or if k < 0. - _Philippe Deléham_, Oct 31 2013 %F A117411 From _G. C. Greubel_, Sep 07 2022: (Start) %F A117411 T(n, n) = 1. %F A117411 T(n, n-1) = -4*A000217(n-1), n >= 1. %F A117411 T(n, n-2) = (-4)^2 * A000332(n), n >= 2. %F A117411 T(n, n-3) = (-4)^3 * A000579(n), n >= 3. %F A117411 T(n, n-4) = (-4)^4 * A000581(n), n >= 4. %F A117411 T(2*n, n) = A262710(n). (End) %e A117411 Triangle begins %e A117411 1; %e A117411 0, 1; %e A117411 0, -4, 1; %e A117411 0, 0, -12, 1; %e A117411 0, 0, 16, -24, 1; %e A117411 0, 0, 0, 80, -40, 1; %e A117411 0, 0, 0, -64, 240, -60, 1; %e A117411 0, 0, 0, 0, -448, 560, -84, 1; %e A117411 0, 0, 0, 0, 256, -1792, 1120, -112, 1; %e A117411 0, 0, 0, 0, 0, 2304, -5376, 2016, -144, 1; %e A117411 0, 0, 0, 0, 0, -1024, 11520, -13440, 3360, -180, 1; %e A117411 0, 0, 0, 0, 0, 0, -11264, 42240, -29568, 5280, -220, 1; %e A117411 0, 0, 0, 0, 0, 0, 4096, -67584, 126720, -59136, 7920, -264, 1; %t A117411 T[n_,k_]:= T[n,k]= (-4)^(n-k)*Sum[Binomial[n, k-j]*Binomial[j, n-k], {j,0,n-k}]; %t A117411 Table[T[n,k], {n,0,15}, {k,0,n}]//Flatten (* _G. C. Greubel_, Sep 07 2022 *) %o A117411 (Magma) %o A117411 A117411:= func< n,k | (-4)^(n-k)*(&+[Binomial(n,k-j)*Binomial(j,n-k): j in [0..n-k]]) >; %o A117411 [A117411(n,k): k in [0..n], n in [0..15]]; // _G. C. Greubel_, Sep 07 2022 %o A117411 (SageMath) %o A117411 def A117411(n,k): return (-4)^(n-k)*sum(binomial(n,k-j)*binomial(j,n-k) for j in (0..n-k)) %o A117411 flatten([[A117411(n,k) for k in (0..n)] for n in (0..15)]) # _G. C. Greubel_, Sep 07 2022 %Y A117411 Cf. A000364, A006495 (row sums), A098158, A117413, A117414. %Y A117411 Cf. A000217, A000332, A000579, A000581, A262710. %K A117411 easy,sign,tabl %O A117411 0,5 %A A117411 _Paul Barry_, Mar 13 2006