This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A117431 #18 Feb 16 2025 08:33:00 %S A117431 1,20,62,9956 %N A117431 String n is at position n in decimal digits of golden ratio (phi). %C A117431 The next such number is greater than 10^7. Not only does number 20 occur at the 20th digit, but it occurs again as the 20th pair of digits (cf. A117432). %H A117431 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GoldenRatio.html">The Golden Ratio</a> %e A117431 1 is a term because the first digit in the golden ratio phi is 1. (phi = 1.6180339887498948482045 ...) %t A117431 StringFinder[m_] := Module[{cc = 10^m + m, sol, aa}, sol = Partition[RealDigits[(1+Sqrt[5])/2, 10, cc] // First, m, 1]; Do[aa = FromDigits[sol[[i]]]; If[aa==i, Print[{i, aa}]], {i,Length[sol]}];] (* Example: StringFinder[2] produces all 2-digit members of the sequence. *) %o A117431 (Python) %o A117431 from sympy import S %o A117431 def aupto(nn): %o A117431 phistr = str(S.GoldenRatio.n(nn+len(str(nn))+1)).replace(".", "")[:-1] %o A117431 for n in range(1, nn+1): %o A117431 nstr = str(n) %o A117431 if phistr[n-1:n-1+len(nstr)] == nstr: print(n, end=", ") %o A117431 aupto(10**5) # _Michael S. Branicky_, Jan 20 2021 %Y A117431 Cf. A001622, A057679, A117432. %K A117431 nonn,base,hard,more %O A117431 1,2 %A A117431 _Colin Rose_, Mar 14 2006