This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A117432 #22 Feb 16 2025 08:33:00 %S A117432 1,20,63,104,7499430,9228401 %N A117432 Let n be an integer consisting of m digits. Then n is a Phithy number if the n-th m-tuple in the decimal digits of golden ratio phi is string n. %H A117432 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GoldenRatio.html">The Golden Ratio</a> %e A117432 1 is a term because the first single digit in golden ratio phi is 1. %e A117432 Number 20 is a term because the 20th pair of digits in phi is 20. %e A117432 (cf. phi = 1.6180339887498948482045868343656381177203...) %t A117432 PhithyNumbers[m_] := Module[{cc = m(10^m)+m, sol, aa}, sol = Partition[RealDigits[GoldenRatio, 10, cc] // First, m]; Do[aa = FromDigits[sol[[i]]]; If[aa==i, Print[{i, aa}]], {i,Length[sol]}];] Example: PhithyNumbers[3] produces all 3-digit Phithy numbers %o A117432 (Python) %o A117432 from sympy import S %o A117432 def aupto(nn): %o A117432 mm = len(str(nn)) %o A117432 phistr = str(S.GoldenRatio.n(nn*mm+1)).replace(".", "")[:-1] %o A117432 for n in range(1, nn+1): %o A117432 nstr = str(n) %o A117432 m = len(nstr) %o A117432 if phistr[(n-1)*m:n*m] == nstr: print(n, end=", ") %o A117432 aupto(10**5) # _Michael S. Branicky_, Jan 20 2021 %Y A117432 Cf. A001622, A109513, A109514, A117431. %K A117432 nonn,base,hard,more %O A117432 0,2 %A A117432 _Colin Rose_, Mar 14 2006 %E A117432 a(4)-a(5) from _Michael S. Branicky_, Jan 21 2021