cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117455 Sum of the differences between the largest part and smallest part over all partitions of n into distinct parts.

This page as a plain text file.
%I A117455 #16 Jul 11 2016 11:20:06
%S A117455 0,0,1,2,4,8,12,19,27,41,54,76,99,133,171,223,279,357,443,554,682,841,
%T A117455 1022,1247,1504,1814,2174,2603,3092,3676,4346,5127,6030,7076,8275,
%U A117455 9669,11254,13078,15167,17556,20270,23377,26899,30902,35448,40592,46403
%N A117455 Sum of the differences between the largest part and smallest part over all partitions of n into distinct parts.
%C A117455 a(n) = sum(k*A117454(n,k), k=0..n-2).
%C A117455 a(n) = A005895(n)-A092265(n). - _Alois P. Heinz_, Jul 06 2012
%H A117455 Alois P. Heinz, <a href="/A117455/b117455.txt">Table of n, a(n) for n = 1..10000</a>
%F A117455 G.f.: sum(x^(i(i+1)/2)*sum(1/(1-x^j), j=1..i-1)/product(1-x^j, j=1..i), i=1..infinity) (obtained by taking the derivative with respect to t of the g.f. G(t,x) of A117454 and letting t=1).
%e A117455 a(7)=12 because the partitions of 7 into distinct parts are [7], [6,1], [5,2], [4,3] and [4,2,1] and (7-7)+(6-1)+(5-2)+(4-3)+(4-1)=12.
%p A117455 g:=sum(x^(i*(i+1)/2)*sum(1/(1-x^j),j=1..i-1)/product(1-x^j,j=1..i),i=1..15): gser:=series(g,x=0,55): seq(coeff(gser,x^n), n=1..50);
%p A117455 # second Maple program:
%p A117455 b:= proc(n, i) option remember;
%p A117455       `if`(i=n, n, 0)+`if`(i>0, b(n, i-1)+
%p A117455       `if`(i<n, b(n-i, i-1), 0), 0)
%p A117455     end:
%p A117455 g:= proc(n, i) option remember;
%p A117455       `if`(i=n, n, 0)+`if`(i<n, g(n, i+1)+g(n-i, i+1), 0)
%p A117455     end:
%p A117455 a:= n-> g(n, 1) -b(n, n):
%p A117455 seq(a(n), n=1..60);  # _Alois P. Heinz_, Jul 06 2012
%t A117455 b[n_, i_] := b[n, i] = If[i==n, n, 0] + If[i>0, b[n, i-1] + If[i<n, b[n-i, i-1], 0], 0]; g[n_, i_] := g[n, i] = If[i==n, n, 0] + If[i<n, g[n, i+1] + g[n-i, i+1], 0]; a[n_] := g[n, 1] - b[n, n]; Table[a[n], {n, 1, 60}] (* _Jean-François Alcover_, Mar 24 2015, after _Alois P. Heinz_ *)
%Y A117455 Cf. A005895, A092265, A117454.
%K A117455 nonn
%O A117455 1,4
%A A117455 _Emeric Deutsch_, Mar 18 2006